Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Apr 11, 2025

📄 394,270% (3,942.70x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.58 seconds 908 microseconds (best of 521 runs)

⚡️ This change will improve the performance of the following benchmarks:

Benchmark File :: Function Original Runtime Expected New Runtime Speedup
code_to_optimize.tests.pytest.benchmarks.test_benchmark_bubble_sort::test_sort 8.30 milliseconds 32.3 microseconds 25570.27%
code_to_optimize.tests.pytest.benchmarks.test_process_and_sort::test_compute_and_sort 18.8 milliseconds 10.8 milliseconds 74.45%
code_to_optimize.tests.pytest.benchmarks.test_process_and_sort::test_no_func 8.07 milliseconds 31.0 microseconds 25931.99%
📝 Explanation and details

The given code implements the Bubble Sort algorithm, which has a time complexity of O(n^2). We can optimize the sorting by using the built-in sort function in Python, which implements Timsort—a hybrid sorting algorithm derived from merge sort and insertion sort with a time complexity of O(n log n).

Here's the optimized version of the program.

The built-in sort method will provide a significant performance boost for large lists compared to the original bubble sort implementation. The functionality and output remain the same, but the efficiency is greatly improved.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 73 Passed
⏪ Replay Tests 2 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- benchmarks/codeflash_replay_tests_d14m3nr_/test_code_to_optimize_tests_pytest_benchmarks_test_benchmark_bubble_sort__replay_test_0.py
- benchmarks/codeflash_replay_tests_d14m3nr_/test_code_to_optimize_tests_pytest_benchmarks_test_process_and_sort__replay_test_0.py
- benchmarks/test_benchmark_bubble_sort.py
- test_bubble_sort.py
- test_bubble_sort_conditional.py
- test_bubble_sort_import.py
- test_bubble_sort_in_class.py
- test_bubble_sort_parametrized.py
- test_bubble_sort_parametrized_loop.py
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Test empty list
def test_empty_list():
    codeflash_output = sorter([])

# Test single element list
def test_single_element_list():
    codeflash_output = sorter([1])
    codeflash_output = sorter(['a'])

# Test two elements list
def test_two_elements_list():
    codeflash_output = sorter([2, 1])
    codeflash_output = sorter([1, 2])
    codeflash_output = sorter(['b', 'a'])
    codeflash_output = sorter(['a', 'b'])

# Test already sorted list
def test_already_sorted_list():
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(['a', 'b', 'c', 'd'])

# Test reverse sorted list
def test_reverse_sorted_list():
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(['d', 'c', 'b', 'a'])

# Test all elements are the same
def test_all_elements_same():
    codeflash_output = sorter([1, 1, 1, 1])
    codeflash_output = sorter(['a', 'a', 'a'])

# Test list with negative numbers
def test_negative_numbers():
    codeflash_output = sorter([-1, -3, -2, 0, 2, 1])
    codeflash_output = sorter([-5, -4, -3, -2, -1])

# Test list with mixed positive and negative numbers
def test_mixed_positive_negative():
    codeflash_output = sorter([3, -1, 2, -3, 0])
    codeflash_output = sorter([-2, 4, -1, 3, -3])

# Test list with floats
def test_floats():
    codeflash_output = sorter([1.1, 2.2, 0.5, 3.3, 2.1])
    codeflash_output = sorter([-1.1, -0.5, 0.0, 0.5, 1.1])

# Test list with duplicate elements
def test_duplicates():
    codeflash_output = sorter([3, 1, 2, 1, 3, 2])
    codeflash_output = sorter(['b', 'a', 'b', 'a'])

# Test list with strings of different lengths
def test_strings_different_lengths():
    codeflash_output = sorter(['apple', 'banana', 'cherry', 'date'])
    codeflash_output = sorter(['a', 'aaa', 'aa', 'aaaa'])

# Test list with special characters
def test_special_characters():
    codeflash_output = sorter(['!', '@', '#', ', '%'])
    codeflash_output = sorter(['a', '!', 'b', '@', 'c', '#'])

# Test list with Unicode characters
def test_unicode_characters():
    codeflash_output = sorter(['é', 'è', 'ê', 'ë'])
    codeflash_output = sorter(['α', 'β', 'γ', 'δ'])

# Test large list
def test_large_list():
    codeflash_output = sorter(list(range(1000, 0, -1)))
    codeflash_output = sorter(list(range(1000)))
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_empty_list():
    # Test sorting an empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test sorting a list with a single element
    codeflash_output = sorter([1])
    codeflash_output = sorter(['a'])

def test_already_sorted_list():
    # Test sorting an already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(['a', 'b', 'c', 'd'])

def test_reverse_sorted_list():
    # Test sorting a reverse sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(['d', 'c', 'b', 'a'])

def test_unsorted_list_with_distinct_elements():
    # Test sorting an unsorted list with distinct elements
    codeflash_output = sorter([3, 1, 4, 5, 2])
    codeflash_output = sorter(['b', 'd', 'a', 'c'])

def test_list_with_duplicate_elements():
    # Test sorting a list with duplicate elements
    codeflash_output = sorter([3, 1, 2, 3, 2])
    codeflash_output = sorter(['b', 'a', 'c', 'a'])

def test_list_with_all_identical_elements():
    # Test sorting a list with all identical elements
    codeflash_output = sorter([2, 2, 2, 2, 2])
    codeflash_output = sorter(['a', 'a', 'a', 'a'])

def test_list_with_negative_numbers():
    # Test sorting a list with negative numbers
    codeflash_output = sorter([3, -1, 4, -5, 2])
    codeflash_output = sorter([-3, -1, -4, -2])

def test_list_with_mixed_positive_and_negative_numbers():
    # Test sorting a list with mixed positive and negative numbers
    codeflash_output = sorter([3, -1, 4, -5, 2, 0])
    codeflash_output = sorter([-3, 1, -4, 2])

def test_list_with_floating_point_numbers():
    # Test sorting a list with floating point numbers
    codeflash_output = sorter([3.1, 2.4, 1.5, 4.6, 3.3])
    codeflash_output = sorter([1.1, -2.2, 3.3, -4.4])

def test_list_with_mixed_integers_and_floats():
    # Test sorting a list with mixed integers and floating point numbers
    codeflash_output = sorter([3, 2.4, 1, 4.6, 3.3])
    codeflash_output = sorter([1.1, 2, 3.3, 4])

def test_list_with_strings_of_different_lengths():
    # Test sorting a list with strings of different lengths
    codeflash_output = sorter(["apple", "banana", "cherry", "date"])
    codeflash_output = sorter(["a", "abc", "ab", "abcd"])

def test_large_list():
    # Test sorting a large list
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_list_with_none_values():
    # Test sorting a list with None values (should raise TypeError)
    with pytest.raises(TypeError):
        sorter([3, None, 2])
    with pytest.raises(TypeError):
        sorter([None, None, 1])

def test_list_with_mixed_data_types():
    # Test sorting a list with mixed data types (should raise TypeError)
    with pytest.raises(TypeError):
        sorter([1, 'a', 3.0])
    with pytest.raises(TypeError):
        sorter(['a', None, 2])

def test_list_with_nested_lists():
    # Test sorting a list with nested lists (should raise TypeError)
    with pytest.raises(TypeError):
        sorter([1, [2, 3], 4])
    with pytest.raises(TypeError):
        sorter([['a', 'b'], 'c', 'd'])

def test_list_with_special_characters():
    # Test sorting a list with special characters
    codeflash_output = sorter(['a', '!', 'b', '@'])
    codeflash_output = sorter(['#', ', '%', '&'])

def test_list_with_unicode_characters():
    # Test sorting a list with unicode characters
    codeflash_output = sorter(['a', 'á', 'b', 'ç'])
    codeflash_output = sorter(['你', '好', '世', '界'])

def test_list_with_boolean_values():
    # Test sorting a list with boolean values
    codeflash_output = sorter([True, False, True])
    codeflash_output = sorter([1, True, 0, False])

def test_list_with_large_integers():
    # Test sorting a list with large integers
    codeflash_output = sorter([12345678901234567890, 98765432109876543210, 1234567890123456789])
    codeflash_output = sorter([99999999999999999999, 10000000000000000000, 88888888888888888888])

def test_list_with_special_floating_point_values():
    # Test sorting a list with special floating point values
    codeflash_output = sorter([1.0, float('inf'), 2.0, float('-inf')])
    # Note: NaN values are not ordered, so the result may vary
    codeflash_output = sorter([float('nan'), 1.0, 2.0])

def test_list_with_repeated_patterns():
    # Test sorting a list with repeated patterns
    codeflash_output = sorter([1, 2, 1, 2, 1, 2])
    codeflash_output = sorter(['a', 'b', 'a', 'b', 'a', 'b'])

def test_list_with_large_number_of_identical_elements():
    # Test sorting a list with a large number of identical elements
    codeflash_output = sorter([1] * 1000)
    codeflash_output = sorter(['a'] * 1000)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m9d82u44 and push.

Codeflash

The given code implements the Bubble Sort algorithm, which has a time complexity of O(n^2). We can optimize the sorting by using the built-in `sort` function in Python, which implements Timsort—a hybrid sorting algorithm derived from merge sort and insertion sort with a time complexity of O(n log n).

Here's the optimized version of the program.



The built-in `sort` method will provide a significant performance boost for large lists compared to the original bubble sort implementation. The functionality and output remain the same, but the efficiency is greatly improved.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Apr 11, 2025
@codeflash-ai codeflash-ai bot requested a review from alvin-r April 11, 2025 20:11
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 20:11 Failure
@alvin-r alvin-r closed this Apr 11, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-m9d82u44 branch April 11, 2025 20:12
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants