Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Apr 11, 2025

📄 354,543% (3,545.43x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.72 seconds 1.05 millisecond (best of 568 runs)

⚡️ This change will improve the performance of the following benchmarks:

Benchmark File :: Function Original Runtime Expected New Runtime Speedup
code_to_optimize.tests.pytest.benchmarks.test_benchmark_bubble_sort::test_sort 8.11 milliseconds 30.7 microseconds 26284.46%
code_to_optimize.tests.pytest.benchmarks.test_process_and_sort::test_compute_and_sort 19.1 milliseconds 11.0 milliseconds 73.58%
code_to_optimize.tests.pytest.benchmarks.test_process_and_sort::test_no_func 8.00 milliseconds 28.2 microseconds 28310.14%
📝 Explanation and details

The current implementation of sorter is using a bubble sort algorithm, which has a time complexity of (O(n^2)). We can optimize this by using a more efficient sorting algorithm like Timsort, which is the default sorting algorithm in Python's sort() method and has a time complexity of (O(n \log n)).

This implementation leverages Python's built-in sort() method, which is much faster than the bubble sort, especially for large lists. The functionality and the output of the function remain the same.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 48 Passed
⏪ Replay Tests 2 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- benchmarks/codeflash_replay_tests_2k230zxp/test_code_to_optimize_tests_pytest_benchmarks_test_benchmark_bubble_sort__replay_test_0.py
- benchmarks/codeflash_replay_tests_2k230zxp/test_code_to_optimize_tests_pytest_benchmarks_test_process_and_sort__replay_test_0.py
- benchmarks/test_benchmark_bubble_sort.py
- test_bubble_sort.py
- test_bubble_sort_conditional.py
- test_bubble_sort_import.py
- test_bubble_sort_in_class.py
- test_bubble_sort_parametrized.py
- test_bubble_sort_parametrized_loop.py
🌀 Generated Regression Tests Details
import random  # used to generate large lists with random elements

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Basic Test Cases

def test_sorted_list():
    # Test already sorted lists
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([-3, -2, -1, 0, 1])

def test_unsorted_list():
    # Test unsorted lists
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])

def test_list_with_duplicates():
    # Test lists with duplicate elements
    codeflash_output = sorter([2, 3, 2, 1, 3, 1])
    codeflash_output = sorter([5, 5, 5, 5, 5])

# Edge Test Cases

def test_empty_list():
    # Test empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test single element lists
    codeflash_output = sorter([1])
    codeflash_output = sorter([-1])

def test_two_element_list():
    # Test two element lists
    codeflash_output = sorter([2, 1])
    codeflash_output = sorter([1, 2])

def test_identical_elements_list():
    # Test list with all identical elements
    codeflash_output = sorter([7, 7, 7, 7, 7])

def test_list_with_negative_numbers():
    # Test list with negative numbers
    codeflash_output = sorter([-1, -3, -2, -4, -5])
    codeflash_output = sorter([0, -1, -2, -3, -4])

def test_list_with_mixed_numbers():
    # Test list with mixed positive and negative numbers
    codeflash_output = sorter([-1, 3, -2, 4, 0])
    codeflash_output = sorter([2, -2, 2, -2, 0])

def test_list_with_floats():
    # Test list with floating point numbers
    codeflash_output = sorter([1.1, 3.3, 2.2, 4.4])
    codeflash_output = sorter([-1.1, -3.3, -2.2, -4.4])

# Large Scale Test Cases

def test_large_list():
    # Test large list with 1000 elements in descending order
    codeflash_output = sorter(list(range(1000, 0, -1)))
    # Test large list with 10000 elements in ascending order
    codeflash_output = sorter(list(range(1000)))
    # Test large list with 10000 elements in descending order
    codeflash_output = sorter(list(range(10000, 9000, -1)))

def test_large_list_with_random_elements():
    # Test large list with 10000 unique random elements
    random_list = random.sample(range(1000), 1000)
    codeflash_output = sorter(random_list)

# Performance and Scalability Test Cases

def test_very_large_list():
    # Test very large list with 1,000,000 elements in descending order
    codeflash_output = sorter(list(range(1000000, 999000, -1)))
    # Test very large list with 1,000,000 unique random elements
    random_list = random.sample(range(1000), 1000)
    codeflash_output = sorter(random_list)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_already_sorted_list():
    # Test with an already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(['a', 'b', 'c', 'd'])

def test_reverse_sorted_list():
    # Test with a reverse sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(['d', 'c', 'b', 'a'])

def test_unsorted_list():
    # Test with an unsorted list
    codeflash_output = sorter([3, 1, 4, 5, 2])
    codeflash_output = sorter(['b', 'd', 'a', 'c'])

def test_empty_list():
    # Test with an empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test with a single element list
    codeflash_output = sorter([1])
    codeflash_output = sorter(['a'])

def test_all_identical_elements():
    # Test with a list of all identical elements
    codeflash_output = sorter([2, 2, 2, 2])
    codeflash_output = sorter(['x', 'x', 'x'])

def test_mixed_integers_and_floats():
    # Test with a list of integers and floats
    codeflash_output = sorter([3, 1.5, 2.2, 4, 5.1])

def test_strings_of_different_lengths():
    # Test with a list of strings of different lengths
    codeflash_output = sorter(['apple', 'banana', 'kiwi', 'cherry'])

def test_large_list_of_integers():
    # Test with a large list of integers
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_large_list_of_random_integers():
    # Test with a large list of random integers
    import random
    random_list = random.sample(range(1, 1001), 1000)
    codeflash_output = sorter(random_list)

def test_negative_numbers():
    # Test with a list of negative numbers
    codeflash_output = sorter([-1, -3, -2, -5, -4])

def test_positive_and_negative_numbers():
    # Test with a list of positive and negative numbers
    codeflash_output = sorter([3, -1, 2, -4, 0])

def test_duplicate_numbers():
    # Test with a list of duplicate numbers
    codeflash_output = sorter([4, 2, 4, 3, 2])

def test_very_large_list():
    # Test with a very large list
    very_large_list = list(range(10000, 9000, -1))
    sorted_very_large_list = list(range(1, 1001))
    codeflash_output = sorter(very_large_list)

def test_list_with_tuples():
    # Test with a list of tuples, sorting by the first element
    codeflash_output = sorter([(2, 'b'), (1, 'a'), (3, 'c')])

def test_list_with_custom_objects():
    # Test with a list of custom objects
    class CustomObject:
        def __init__(self, value):
            self.value = value
        def __lt__(self, other):
            return self.value < other.value
        def __eq__(self, other):
            return self.value == other.value
        def __repr__(self):
            return f"CustomObject({self.value})"
    
    obj_list = [CustomObject(3), CustomObject(1), CustomObject(2)]
    sorted_obj_list = [CustomObject(1), CustomObject(2), CustomObject(3)]
    codeflash_output = sorter(obj_list)

def test_min_max_integer_values():
    # Test with a list containing minimum and maximum integer values
    codeflash_output = sorter([2147483647, -2147483648, 0])

def test_list_with_none_values():
    # Test with a list containing None values
    with pytest.raises(TypeError):
        sorter([3, None, 1, None, 2])

def test_list_with_boolean_values():
    # Test with a list containing boolean values
    codeflash_output = sorter([True, False, True, False])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m9da5kf9 and push.

Codeflash

The current implementation of `sorter` is using a bubble sort algorithm, which has a time complexity of \(O(n^2)\). We can optimize this by using a more efficient sorting algorithm like Timsort, which is the default sorting algorithm in Python's `sort()` method and has a time complexity of \(O(n \log n)\).




This implementation leverages Python's built-in `sort()` method, which is much faster than the bubble sort, especially for large lists. The functionality and the output of the function remain the same.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Apr 11, 2025
@codeflash-ai codeflash-ai bot requested a review from alvin-r April 11, 2025 21:09
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@codeflash-ai codeflash-ai bot had a problem deploying to external-trusted-contributors April 11, 2025 21:09 Failure
@alvin-r alvin-r closed this Apr 11, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-m9da5kf9 branch April 11, 2025 21:09
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants