Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jun 12, 2025

📄 150,024% (1,500.24x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.56 seconds 2.37 milliseconds (best of 127 runs)

📝 Explanation and details

Here's a faster rewritten version of your program using Python's built-in sorting, which is highly optimized (Timsort, O(n log n)) compared to the bubble sort used previously (O(n²)). All function signatures and returns are preserved, as are existing comments; the logic is simply optimized.

This version sorts the list in-place (just as your original did), but much faster and with optimal memory usage for Python lists.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 52 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- benchmarks/test_benchmark_bubble_sort.py
    - test_sort2: 7.58ms -> 23.6μs
- test_bubble_sort.py
    - test_sort: 10.8μs -> 8.08μs
- test_bubble_sort_conditional.py
    - test_sort: 10.8μs -> 8.08μs
- test_bubble_sort_import.py
    - test_sort: 10.8μs -> 8.08μs
- test_bubble_sort_in_class.py
    - test_sort_in_pytest_class: 10.2μs -> 8.00μs
- test_bubble_sort_parametrized.py
- test_bubble_sort_parametrized_loop.py
🌀 Generated Regression Tests Details
import random  # used for generating large random test cases
import string  # used for string test cases
import sys  # used for maxsize/minsize edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# 1. Basic Test Cases

def test_sorter_empty_list():
    # Test sorting an empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.42μs

def test_sorter_single_element():
    # Test sorting a single-element list
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.83μs -> 8.42μs

def test_sorter_sorted_integers():
    # Test sorting an already sorted list of integers
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 8.50μs

def test_sorter_reverse_sorted_integers():
    # Test sorting a reverse-sorted list of integers
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.1μs -> 8.38μs

def test_sorter_unsorted_integers():
    # Test sorting an unsorted list of integers
    arr = [3, 1, 4, 1, 5, 9, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.8μs -> 8.42μs

def test_sorter_with_duplicates():
    # Test sorting a list with duplicate elements
    arr = [2, 3, 2, 1, 3, 1, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.8μs -> 8.54μs

def test_sorter_negative_numbers():
    # Test sorting a list with negative numbers
    arr = [-3, -1, -4, -2, 0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.88μs -> 8.46μs

def test_sorter_floats():
    # Test sorting a list with floats and integers
    arr = [3.1, 2, 4.5, 1.0, 2.2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.8μs -> 9.46μs

def test_sorter_strings():
    # Test sorting a list of strings
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.42μs

def test_sorter_mixed_case_strings():
    # Test sorting a list of strings with mixed cases
    arr = ["Banana", "apple", "Cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.21μs -> 8.79μs

# 2. Edge Test Cases

def test_sorter_all_equal():
    # Test sorting a list where all elements are equal
    arr = [7] * 10
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.1μs -> 9.42μs

def test_sorter_alternating_min_max():
    # Test sorting a list alternating between min and max values
    arr = [0, 100, 0, 100, 0, 100]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.2μs -> 8.21μs

def test_sorter_large_numbers():
    # Test sorting a list with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize - 1, 0, 1, -1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.8μs -> 8.50μs

def test_sorter_floats_precision():
    # Test sorting floats with close values
    arr = [1.000001, 1.0000001, 1.00001, 1.0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.0μs -> 9.33μs

def test_sorter_unicode_strings():
    # Test sorting a list of unicode strings
    arr = ["α", "β", "γ", "δ", "ε"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.2μs -> 9.25μs

def test_sorter_empty_strings():
    # Test sorting a list containing empty strings
    arr = ["", "a", "b", "", "c"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 9.00μs

def test_sorter_none_raises_typeerror():
    # Test sorting a list containing None with numbers should raise TypeError
    arr = [1, None, 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_incomparable_types_raises_typeerror():
    # Test sorting a list with incomparable types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_mutation():
    # Test that the input list is mutated (in-place sort)
    arr = [3, 2, 1]
    sorter(arr)

def test_sorter_return_is_input():
    # Test that the returned list is the same object as input
    arr = [3, 2, 1]
    codeflash_output = sorter(arr); result = codeflash_output # 10.3μs -> 8.46μs

# 3. Large Scale Test Cases

def test_sorter_large_random_integers():
    # Test sorting a large list of random integers
    arr = [random.randint(-10000, 10000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.7ms -> 70.8μs

def test_sorter_large_sorted():
    # Test sorting a large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 20.5ms -> 36.2μs

def test_sorter_large_reverse_sorted():
    # Test sorting a large reverse-sorted list
    arr = list(range(999, -1, -1))
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 33.6ms -> 35.6μs

def test_sorter_large_duplicates():
    # Test sorting a large list with many duplicate values
    arr = [random.choice([0, 1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.0ms -> 59.1μs

def test_sorter_large_strings():
    # Test sorting a large list of random strings
    arr = [''.join(random.choices(string.ascii_lowercase, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 32.8ms -> 101μs

def test_sorter_large_floats():
    # Test sorting a large list of random floats
    arr = [random.uniform(-1e6, 1e6) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.2ms -> 298μs
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large random lists
import string  # used for string sorting tests
import sys  # used for min/max int edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# ---------------------------
# 1. BASIC TEST CASES
# ---------------------------

def test_sorter_empty_list():
    # Test sorting an empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.42μs

def test_sorter_single_element():
    # Test sorting a list with a single element
    arr = [5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.83μs -> 8.42μs

def test_sorter_sorted_list():
    # Test sorting an already sorted list
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.5μs -> 8.33μs

def test_sorter_reverse_sorted_list():
    # Test sorting a reverse sorted list
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.0μs -> 8.54μs

def test_sorter_unsorted_list():
    # Test sorting a typical unsorted list
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.79μs

def test_sorter_list_with_duplicates():
    # Test sorting a list with duplicate values
    arr = [3, 1, 2, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.0μs -> 8.67μs

def test_sorter_negative_numbers():
    # Test sorting a list with negative numbers
    arr = [-2, -5, 0, 3, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.88μs -> 8.46μs

def test_sorter_mixed_positive_negative():
    # Test sorting a list with both positive and negative numbers
    arr = [0, -1, 3, -2, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 8.67μs

def test_sorter_all_equal_elements():
    # Test sorting a list where all elements are the same
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.2μs -> 8.38μs

# ---------------------------
# 2. EDGE TEST CASES
# ---------------------------

def test_sorter_large_and_small_integers():
    # Test sorting a list with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize - 1, 0, 999, -999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.4μs -> 9.17μs

def test_sorter_floats():
    # Test sorting a list of floats
    arr = [3.2, 1.5, 2.7, 0.0, -1.1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.8μs -> 9.46μs

def test_sorter_mixed_ints_and_floats():
    # Test sorting a list with both ints and floats
    arr = [1, 2.2, 0, -3.5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.3μs -> 9.96μs

def test_sorter_strings():
    # Test sorting a list of strings
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.42μs

def test_sorter_single_character_strings():
    # Test sorting a list of single-character strings
    arr = ["d", "a", "c", "b"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.0μs -> 8.33μs

def test_sorter_empty_strings():
    # Test sorting a list with empty strings
    arr = ["", "a", "b", ""]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 9.00μs

def test_sorter_unicode_strings():
    # Test sorting a list with unicode strings
    arr = ["éclair", "apple", "Éclair", "banana"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.2μs -> 9.25μs

def test_sorter_booleans():
    # Test sorting a list with booleans (False < True)
    arr = [True, False, True, False]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 8.54μs

def test_sorter_already_sorted_large():
    # Test a larger already sorted list
    arr = list(range(100))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 151μs -> 12.7μs

def test_sorter_reverse_sorted_large():
    # Test a larger reverse sorted list
    arr = list(range(99, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 263μs -> 10.9μs

def test_sorter_stability():
    # Test stability: elements that compare equal should retain their order
    class StableObj:
        def __init__(self, key, value):
            self.key = key
            self.value = value
        def __lt__(self, other):
            return self.key < other.key
        def __gt__(self, other):
            return self.key > other.key
        def __eq__(self, other):
            return self.key == other.key
        def __repr__(self):
            return f"({self.key},{self.value})"
    arr = [StableObj(1, 'a'), StableObj(1, 'b'), StableObj(2, 'c')]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_type_error():
    # Test sorting a list with incomparable types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

# ---------------------------
# 3. LARGE SCALE TEST CASES
# ---------------------------

def test_sorter_large_random_integers():
    # Test sorting a large list of random integers
    arr = random.sample(range(-10000, -9000), 1000)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.7ms -> 70.8μs

def test_sorter_large_random_floats():
    # Test sorting a large list of random floats
    arr = [random.uniform(-10000, 10000) for _ in range(1000)]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.1ms -> 291μs

def test_sorter_large_strings():
    # Test sorting a large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 32.8ms -> 101μs

def test_sorter_large_duplicates():
    # Test sorting a large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.0ms -> 59.1μs

def test_sorter_large_all_equal():
    # Test sorting a large list where all elements are equal
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 20.3ms -> 33.6μs
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mbtviko7 and push.

Codeflash

Here's a faster rewritten version of your program using Python's built-in sorting, which is highly optimized (Timsort, O(n log n)) compared to the bubble sort used previously (O(n²)). All function signatures and returns are preserved, as are existing comments; the logic is simply optimized.



This version sorts the list in-place (just as your original did), but much faster and with optimal memory usage for Python lists.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 12, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 June 12, 2025 21:11
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mbtviko7 branch June 12, 2025 23:43
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants