Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jun 18, 2025

📄 174,908% (1,749.08x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.39 seconds 1.94 milliseconds (best of 491 runs)

📝 Explanation and details

Here’s your optimized program. The original code uses an unoptimized bubble sort (O(n²)), always iterating through the entire list regardless of whether it's already sorted.
A faster approach is to use Python’s built-in sort method (Timsort, O(n log n)), which is highly optimized.
I’ve preserved your print statements and function signature.

Comments:

  • The purpose and behavior (including print output) remain identical.
  • This approach is significantly faster for all but the smallest lists.
  • If you require sorting without mutating the input list, use sorted(arr) (returns a new list).
    Let me know if you need to preserve the original or add more features!

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 54 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details and Runtime
🧪Test File 🧬Test Name ⏱️Original ⏱️Optimized 💯Gain
benchmarks/test_benchmark_bubble_sort.py test_sort2 6.97ms 16.5μs ✅42042.47%
test_bubble_sort.py test_sort 825ms 139μs ✅592141.14%
test_bubble_sort_conditional.py test_sort 6.00μs 2.96μs ✅102.84%
test_bubble_sort_import.py test_sort 832ms 141μs ✅588624.04%
test_bubble_sort_in_class.py TestSorter.test_sort_in_pytest_class 831ms 138μs ✅602634.76%
test_bubble_sort_parametrized.py test_sort_parametrized 507ms 136μs ✅371076.70%
test_bubble_sort_parametrized_loop.py test_sort_loop_parametrized 95.8μs 20.5μs ✅366.60%
🌀 Generated Regression Tests Details and Runtime
import random  # used for generating large scale test data
import string  # used for string sorting tests
import sys  # used for maxsize in edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# --- BASIC TEST CASES ---

def test_sorter_basic_sorted():
    # Already sorted list should remain unchanged
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.50μs -> 3.00μs (50.00%)

def test_sorter_basic_reverse():
    # Reverse sorted list should be sorted ascending
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.04μs -> 2.92μs (72.81%)

def test_sorter_basic_unsorted():
    # Unsorted list with random order
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.79μs -> 2.92μs (64.33%)

def test_sorter_basic_duplicates():
    # List with duplicate elements
    arr = [4, 2, 2, 5, 3, 4]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.08μs -> 3.04μs (67.15%)

def test_sorter_basic_negatives():
    # List with negative and positive numbers
    arr = [0, -1, 3, -2, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.83μs -> 3.04μs (58.93%)

def test_sorter_basic_single_element():
    # List with a single element should remain unchanged
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.62μs -> 2.83μs (27.91%)

def test_sorter_basic_two_elements():
    # Two-element list, unsorted
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.75μs -> 2.83μs (32.37%)

def test_sorter_basic_all_equal():
    # All elements are equal
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.00μs -> 2.92μs (37.13%)

# --- EDGE TEST CASES ---

def test_sorter_empty_list():
    # Empty list should return empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.42μs -> 2.75μs (24.22%)

def test_sorter_large_integers():
    # List with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 1, -1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.04μs -> 3.46μs (74.67%)

def test_sorter_floats():
    # List with floats and integers
    arr = [3.2, 1.5, 2, 4.8, 2.0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.83μs -> 3.88μs (76.36%)

def test_sorter_strings():
    # List of strings should sort lexicographically
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.71μs -> 3.08μs (52.71%)

def test_sorter_mixed_types_raises():
    # List with mixed types should raise TypeError
    arr = [1, "two", 3]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_preserves_input_type():
    # Ensure the function returns a list, not another type
    arr = [3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.38μs -> 2.92μs (50.03%)


def test_sorter_unicode_strings():
    # List with unicode strings
    arr = ["éclair", "apple", "zèbre"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.04μs -> 3.54μs (70.58%)
    # Note: Python's default sort is locale-independent, so accents sort after ASCII.

def test_sorter_boolean_values():
    # List with boolean values (False < True)
    arr = [True, False, True]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.46μs -> 3.00μs (48.63%)

def test_sorter_mutates_input():
    # The function should mutate the input list (since it sorts in-place)
    arr = [3, 1, 2]
    sorter(arr)

# --- LARGE SCALE TEST CASES ---

def test_sorter_large_random_integers():
    # Sorting a large list of random integers
    arr = random.sample(range(-10000, -9000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.7ms -> 61.8μs (46340.14%)

def test_sorter_large_sorted():
    # Sorting a large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.8ms -> 29.5μs (63417.93%)

def test_sorter_large_reverse_sorted():
    # Sorting a large reverse sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 31.1ms -> 29.5μs (105352.97%)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 25.0ms -> 51.2μs (48819.39%)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.1ms -> 92.4μs (32499.14%)

def test_sorter_large_all_equal():
    # Large list with all elements equal
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 17.6ms -> 27.9μs (63217.04%)

def test_sorter_large_floats():
    # Large list of floats
    arr = [random.uniform(-1e6, 1e6) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 26.2ms -> 286μs (9057.21%)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large random lists
import string  # used for string sorting tests

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# ----------------------
# 1. Basic Test Cases
# ----------------------

def test_sorter_basic_sorted():
    # Already sorted list
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.12μs -> 3.04μs (68.53%)

def test_sorter_basic_reverse():
    # Reverse sorted list
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.29μs -> 2.96μs (78.87%)

def test_sorter_basic_unsorted():
    # Unsorted list
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.92μs -> 3.04μs (61.66%)

def test_sorter_basic_duplicates():
    # List with duplicates
    arr = [3, 1, 2, 3, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.75μs -> 2.88μs (65.22%)

def test_sorter_basic_negative_numbers():
    # List with negative numbers
    arr = [0, -1, 3, -2, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.08μs -> 3.04μs (67.09%)

def test_sorter_basic_single_element():
    # Single element list
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.79μs -> 2.75μs (37.89%)

def test_sorter_basic_two_elements():
    # Two element list
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.08μs -> 2.92μs (40.05%)

def test_sorter_basic_all_same():
    # All elements the same
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.33μs -> 2.92μs (48.58%)

def test_sorter_basic_floats():
    # List with floats
    arr = [2.2, 1.1, 3.3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.25μs -> 3.46μs (51.82%)

def test_sorter_basic_mixed_int_float():
    # List with ints and floats
    arr = [1, 2.2, 0.5, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.79μs -> 3.50μs (65.46%)

# ----------------------
# 2. Edge Test Cases
# ----------------------

def test_sorter_edge_empty():
    # Empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 3.08μs -> 2.71μs (13.85%)

def test_sorter_edge_large_negative():
    # List with large negative and positive numbers
    arr = [1000000, -1000000, 0, 999999, -999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.67μs -> 3.33μs (69.95%)

def test_sorter_edge_strings():
    # List of strings
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.88μs -> 3.04μs (60.26%)

def test_sorter_edge_strings_case():
    # List of strings with different cases
    arr = ["banana", "Apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.38μs -> 2.96μs (47.90%)

def test_sorter_edge_unicode_strings():
    # List of unicode strings
    arr = ["éclair", "apple", "Éclair"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.21μs -> 3.29μs (58.20%)

def test_sorter_edge_min_max_int():
    # List with min and max int
    arr = [-(2**31), 0, 2**31 - 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.54μs -> 3.04μs (49.31%)

def test_sorter_edge_min_max_float():
    # List with min and max float
    arr = [float('inf'), float('-inf'), 0.0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.92μs -> 3.29μs (49.33%)

def test_sorter_edge_nan():
    # List with NaN (should place NaN at the end, as per Python's sort)
    arr = [3, float('nan'), 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.58μs -> 3.17μs (44.71%)

def test_sorter_edge_large_and_small_floats():
    # List with very large and very small floats
    arr = [1e308, 1e-308, -1e308, -1e-308]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.71μs -> 5.29μs (64.57%)

def test_sorter_edge_custom_objects():
    # List of custom objects with __lt__ defined
    class Box:
        def __init__(self, value):
            self.value = value
        def __lt__(self, other):
            return self.value < other.value
        def __eq__(self, other):
            return self.value == other.value
        def __repr__(self):
            return f"Box({self.value})"
    arr = [Box(3), Box(1), Box(2)]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.25μs -> 3.79μs (64.86%)

def test_sorter_edge_mutation():
    # Ensure function mutates the list in-place
    arr = [2, 1]
    sorter(arr)

def test_sorter_edge_type_error():
    # List with incomparable types should raise TypeError
    arr = [1, "a"]
    with pytest.raises(TypeError):
        sorter(arr.copy())

# ----------------------
# 3. Large Scale Test Cases
# ----------------------

def test_sorter_large_sorted():
    # Large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.4ms -> 30.0μs (61464.97%)

def test_sorter_large_reverse():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.8ms -> 29.7μs (103874.95%)

def test_sorter_large_random():
    # Large random list
    arr = random.sample(range(1000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.2ms -> 59.8μs (48745.95%)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 24.6ms -> 51.0μs (48158.65%)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [
        ''.join(random.choices(string.ascii_letters, k=5))
        for _ in range(1000)
    ]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.7ms -> 89.9μs (32972.32%)

def test_sorter_large_negative_positive():
    # Large list with negative and positive numbers
    arr = [random.randint(-100000, 100000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.2ms -> 66.8μs (42107.61%)

def test_sorter_large_all_same():
    # Large list with all elements the same
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 18.1ms -> 27.5μs (65737.40%)

def test_sorter_large_floats():
    # Large list of floats
    arr = [random.uniform(-1e6, 1e6) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 26.0ms -> 286μs (8990.26%)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mc1a8nze and push.

Codeflash

Here’s your optimized program. The original code uses an unoptimized bubble sort (O(n²)), always iterating through the entire list regardless of whether it's already sorted.  
A faster approach is to use Python’s built-in `sort` method (Timsort, O(n log n)), which is highly optimized.  
I’ve preserved your print statements and function signature.



**Comments:**
- The purpose and behavior (including print output) remain identical.
- This approach is significantly faster for all but the smallest lists.  
- If you require sorting **without mutating** the input list, use `sorted(arr)` (returns a new list).  
Let me know if you need to preserve the original or add more features!
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 18, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 June 18, 2025 01:37
@aseembits93
Copy link
Contributor

aseembits93 commented Jun 18, 2025

Test File Test Name Original time Optimized time Percentage Gain
benchmarks/test_benchmark_bubble_sort.py::test_sort2 test_sort2 6.97ms 16.5μs ✅42042.47%
test_bubble_sort.py test_sort 825ms 139μs ✅592141.14%
test_bubble_sort_conditional.py test_sort 6.00μs 2.96μs ✅102.84%
test_bubble_sort_import.py test_sort 832ms 141μs ✅588624.04%
test_bubble_sort_in_class.py TestSorter.test_sort_in_pytest_class 831ms 138μs ✅602634.76%
test_bubble_sort_parametrized.py test_sort_parametrized 507ms 136μs ✅371076.70%
test_bubble_sort_parametrized_loop.py test_sort_loop_parametrized 95.8μs 20.5μs ✅366.60%

@aseembits93
Copy link
Contributor

aseembits93 commented Jun 18, 2025

Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 6.97ms 16.5μs ✅42042.47%
benchmarks/test_benchmark_bubble_sort.py::test_sort2 6.97ms 16.5μs ⚠️-42042.47%
benchmarks/test_benchmark_bubble_sort.py::test_sort2 6.97ms NaN

@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mc1a8nze branch June 18, 2025 03:15
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants