Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Mar 5, 2025

📄 474,003% (4,740.03x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 5.22 seconds 1.10 millisecond (best of 921 runs)

📝 Explanation and details

Certainly, here's an optimized version of your Python program using the Timsort algorithm, which has an average-case time complexity of O(n log n).

The sort() method in Python uses Timsort, which is a very efficient sorting algorithm for real-world data. It has a worst-case time complexity of O(n log n) and performs very well on partially sorted data. This will significantly speed up the sorting process compared to the original bubble sort implementation which has a time complexity of O(n^2).

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 19 Passed
🌀 Generated Regression Tests 49 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- test_bubble_sort.py
- test_bubble_sort_conditional.py
- test_bubble_sort_import.py
- test_bubble_sort_in_class.py
- test_bubble_sort_parametrized.py
- test_bubble_sort_parametrized_loop.py
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_empty_list():
    # Test sorting an empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test sorting a list with a single element
    codeflash_output = sorter([1])
    codeflash_output = sorter(['a'])

def test_already_sorted_list():
    # Test sorting an already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(['a', 'b', 'c', 'd'])

def test_reverse_sorted_list():
    # Test sorting a reverse sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(['d', 'c', 'b', 'a'])

def test_unsorted_list():
    # Test sorting a general unsorted list
    codeflash_output = sorter([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
    codeflash_output = sorter(['b', 'd', 'a', 'c'])

def test_list_with_duplicates():
    # Test sorting a list with duplicate elements
    codeflash_output = sorter([2, 3, 2, 1, 3, 1])
    codeflash_output = sorter(['a', 'b', 'a', 'b'])

def test_list_with_negative_numbers():
    # Test sorting a list with negative numbers
    codeflash_output = sorter([-1, -3, -2, 0, 2, 1])
    codeflash_output = sorter([3, -1, 2, -3, 0])

def test_large_list():
    # Test sorting a large list
    codeflash_output = sorter(list(range(1000, 0, -1)))
    codeflash_output = sorter(list(range(10000, 9000, -1)))

def test_list_with_floats():
    # Test sorting a list with floating point numbers
    codeflash_output = sorter([3.1, 2.2, 1.3, 4.4])
    codeflash_output = sorter([1.1, 1.01, 1.001, 1.0001])

def test_list_with_strings_of_different_lengths():
    # Test sorting a list with strings of different lengths
    codeflash_output = sorter(['apple', 'banana', 'cherry', 'date'])
    codeflash_output = sorter(['a', 'aaa', 'aa', 'aaaa'])

def test_list_with_special_characters():
    # Test sorting a list with special characters
    codeflash_output = sorter(['!', '@', '#', ', '%'])
    codeflash_output = sorter(['apple', 'Apple', '@pple', 'apple!'])

def test_list_with_boolean_values():
    # Test sorting a list with boolean values
    codeflash_output = sorter([True, False, True, False])
    codeflash_output = sorter([False, True, False, True])

def test_list_with_none_values():
    # Test sorting a list with None values
    with pytest.raises(TypeError):
        sorter([None, 1, None, 2])
    with pytest.raises(TypeError):
        sorter([None, 'a', None, 'b'])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Test empty list
def test_empty_list():
    codeflash_output = sorter([])

# Test single element list
def test_single_element_list():
    codeflash_output = sorter([1])
    codeflash_output = sorter(['a'])

# Test already sorted list
def test_already_sorted_list():
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(['a', 'b', 'c', 'd'])

# Test reverse sorted list
def test_reverse_sorted_list():
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(['d', 'c', 'b', 'a'])

# Test unsorted list with unique elements
def test_unsorted_unique_elements():
    codeflash_output = sorter([3, 1, 4, 5, 2])
    codeflash_output = sorter(['b', 'd', 'a', 'c'])

# Test list with duplicate elements
def test_list_with_duplicates():
    codeflash_output = sorter([3, 1, 2, 3, 1])
    codeflash_output = sorter(['b', 'a', 'a', 'c', 'b'])

# Test list with negative numbers
def test_list_with_negative_numbers():
    codeflash_output = sorter([3, -1, 4, -5, 2])
    codeflash_output = sorter([-3, -1, -4, -2])

# Test list with mixed positive and negative numbers
def test_list_with_mixed_numbers():
    codeflash_output = sorter([3, -1, 4, -5, 2])
    codeflash_output = sorter([-3, 1, -4, 2])

# Test list with floating point numbers
def test_list_with_floats():
    codeflash_output = sorter([3.1, 1.4, 2.7, 0.5, 2.2])
    codeflash_output = sorter([-3.5, 1.2, -4.8, 2.3])

# Test list with identical elements
def test_list_with_identical_elements():
    codeflash_output = sorter([1, 1, 1, 1, 1])
    codeflash_output = sorter(['a', 'a', 'a', 'a'])

# Test list with large numbers
def test_list_with_large_numbers():
    codeflash_output = sorter([1e10, 1e12, 1e11, 1e9])
    codeflash_output = sorter([-1e10, -1e12, -1e11, -1e9])

# Test list with special characters
def test_list_with_special_characters():
    codeflash_output = sorter(['!', '@', '#', ', '%'])
    codeflash_output = sorter([', '!', '%', '@', '#'])

# Test large list
def test_large_list():
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

if __name__ == "__main__":
    pytest.main()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m7wb862e and push.

Codeflash

Certainly, here's an optimized version of your Python program using the Timsort algorithm, which has an average-case time complexity of O(n log n).



The `sort()` method in Python uses Timsort, which is a very efficient sorting algorithm for real-world data. It has a worst-case time complexity of O(n log n) and performs very well on partially sorted data. This will significantly speed up the sorting process compared to the original bubble sort implementation which has a time complexity of O(n^2).
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 5, 2025
@codeflash-ai codeflash-ai bot requested a review from dasarchan March 5, 2025 19:27
@dasarchan dasarchan closed this Mar 5, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-m7wb862e branch March 5, 2025 19:28
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants