Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Mar 6, 2025

📄 155% (1.55x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 183 milliseconds 71.9 milliseconds (best of 75 runs)

📝 Explanation and details

Sure! The built-in sort method in Python is already highly optimized. However, we can optimize the program by removing the unnecessary print statement within the function, which may slightly slow down the execution for large data. Instead, we can directly print the result after calling the function to separate concerns more effectively. Here's the updated program.

With this change, the focus of the sorter function is solely on sorting the list, while the main program handles the printing. This separation improves clarity and may offer a slight performance improvement by avoiding the unnecessary print operation within the sorting function, especially for large lists.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 19 Passed
🌀 Generated Regression Tests 51 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- test_bubble_sort.py
- test_bubble_sort_conditional.py
- test_bubble_sort_import.py
- test_bubble_sort_in_class.py
- test_bubble_sort_parametrized.py
- test_bubble_sort_parametrized_loop.py
🌀 Generated Regression Tests Details
import random

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Basic Functionality
def test_standard_list_of_integers():
    codeflash_output = sorter([3, 1, 2])
    codeflash_output = sorter([10, 5, 8, 1])

def test_standard_list_of_floats():
    codeflash_output = sorter([3.5, 1.2, 2.8])
    codeflash_output = sorter([10.1, 5.5, 8.8, 1.1])

def test_mixed_list_of_integers_and_floats():
    codeflash_output = sorter([3, 1.2, 2])
    codeflash_output = sorter([10.1, 5, 8.8, 1])

# Edge Cases
def test_empty_list():
    codeflash_output = sorter([])

def test_single_element_list():
    codeflash_output = sorter([1])
    codeflash_output = sorter([3.5])

def test_list_with_duplicates():
    codeflash_output = sorter([3, 1, 2, 1])
    codeflash_output = sorter([10, 5, 8, 5, 1])

def test_list_with_all_identical_elements():
    codeflash_output = sorter([2, 2, 2, 2])
    codeflash_output = sorter([5.5, 5.5, 5.5])

def test_list_with_negative_numbers():
    codeflash_output = sorter([-1, -3, -2])
    codeflash_output = sorter([3, -1, 2, -2])

def test_list_with_mixed_positive_and_negative_numbers():
    codeflash_output = sorter([3, -1, 2, -2])
    codeflash_output = sorter([10, -5, 8, -1])


def test_large_list_of_integers():
    large_list = random.sample(range(1000), 1000)
    codeflash_output = sorter(large_list)

def test_large_list_of_floats():
    large_list = [random.uniform(-10000, 10000) for _ in range(1000)]
    codeflash_output = sorter(large_list)

# Performance and Scalability
def test_sorted_list():
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([1.1, 2.2, 3.3, 4.4, 5.5])

def test_reverse_sorted_list():
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([5.5, 4.4, 3.3, 2.2, 1.1])

# Special Cases
def test_list_with_strings():
    codeflash_output = sorter(['banana', 'apple', 'cherry'])
    codeflash_output = sorter(['dog', 'cat', 'elephant'])

def test_list_with_mixed_data_types():
    with pytest.raises(TypeError):
        sorter([3, 'apple', 2])
    with pytest.raises(TypeError):
        sorter([10.1, 'banana', 5])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter


# unit tests
def test_basic_sorted_list_of_integers():
    codeflash_output = sorter([1, 2, 3, 4, 5])

def test_basic_unsorted_list_of_integers():
    codeflash_output = sorter([5, 3, 1, 4, 2])

def test_basic_list_with_duplicate_integers():
    codeflash_output = sorter([2, 3, 2, 1, 4, 3])

def test_edge_empty_list():
    codeflash_output = sorter([])

def test_edge_single_element_list():
    codeflash_output = sorter([1])
    codeflash_output = sorter(["a"])

def test_edge_all_elements_same():
    codeflash_output = sorter([1, 1, 1, 1, 1])
    codeflash_output = sorter(["a", "a", "a"])

def test_different_data_types_list_of_strings():
    codeflash_output = sorter(["apple", "banana", "cherry"])
    codeflash_output = sorter(["banana", "apple", "cherry"])

def test_different_data_types_list_of_mixed_case_strings():
    codeflash_output = sorter(["Banana", "apple", "Cherry"])

def test_different_data_types_list_of_floats():
    codeflash_output = sorter([1.1, 3.3, 2.2, 4.4, 5.5])

def test_different_data_types_list_of_negative_and_positive_integers():
    codeflash_output = sorter([-1, -3, 2, 1, 0])

def test_complex_list_of_tuples():
    codeflash_output = sorter([(2, "b"), (1, "a"), (3, "c")])

def test_complex_list_of_lists():
    codeflash_output = sorter([[2, "b"], [1, "a"], [3, "c"]])

def test_complex_list_with_mixed_data_types():
    with pytest.raises(TypeError):
        sorter([1, "a", 2.2])
    with pytest.raises(TypeError):
        sorter([1, [2, 3], "a"])

def test_large_scale_large_list_of_integers():
    large_list = list(range(1000000, 999000, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_large_scale_large_list_with_duplicates():
    large_list_with_duplicates = [1, 2, 3] * 1000000
    sorted_large_list_with_duplicates = [1, 1, 1] * 1000000 + [2, 2, 2] * 1000000 + [3, 3, 3] * 1000000
    codeflash_output = sorter(large_list_with_duplicates)

def test_performance_very_large_list_of_random_integers():
    import random
    random.seed(0)
    very_large_list = random.sample(range(1000), 1000)
    codeflash_output = sorter(very_large_list)

def test_performance_very_large_list_of_random_floats():
    import random
    random.seed(0)
    very_large_list_of_floats = [random.uniform(0, 1000000) for _ in range(1000)]
    codeflash_output = sorter(very_large_list_of_floats)

def test_special_characters_list_of_strings_with_special_characters():
    codeflash_output = sorter(["!apple", "#banana", "@cherry"])

def test_special_characters_list_of_unicode_strings():
    codeflash_output = sorter(["éclair", "banana", "apple"])

def test_stability_of_sort_list_with_identical_elements_except_for_secondary_attribute():
    codeflash_output = sorter([(1, "b"), (1, "a"), (1, "c")])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m7wpbxgz and push.

Codeflash

Sure! The built-in `sort` method in Python is already highly optimized. However, we can optimize the program by removing the unnecessary print statement within the function, which may slightly slow down the execution for large data. Instead, we can directly print the result after calling the function to separate concerns more effectively. Here's the updated program.



With this change, the focus of the `sorter` function is solely on sorting the list, while the main program handles the printing. This separation improves clarity and may offer a slight performance improvement by avoiding the unnecessary print operation within the sorting function, especially for large lists.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 6, 2025
@codeflash-ai codeflash-ai bot requested a review from dasarchan March 6, 2025 02:02
@dasarchan dasarchan closed this Mar 6, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-m7wpbxgz branch March 6, 2025 02:03
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants