Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 15 additions & 11 deletions code_to_optimize/code_directories/simple_tracer_e2e/workload.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,16 @@


def funcA(number):
number = number if number < 1000 else 1000
k = 0
for i in range(number * 100):
k += i
# Simplify the for loop by using sum with a range object
j = sum(range(number))
number = min(1000, number)

# Use a generator expression directly in join for more efficiency
return " ".join(str(i) for i in range(number))
# Use the arithmetic progression sum formula for sum(range(number * 100))
k = ((number * 100) - 1) * (number * 100) // 2

# Use the arithmetic progression sum formula for sum(range(number))
j = (number - 1) * number // 2

# Use map and str.join for better performance compared to generator expressions in this context
return " ".join(map(str, range(number)))


def test_threadpool() -> None:
Expand All @@ -22,14 +23,15 @@ def test_threadpool() -> None:
for r in result:
print(r)


class AlexNet:
def __init__(self, num_classes=1000):
self.num_classes = num_classes
self.features_size = 256 * 6 * 6

def forward(self, x):
features = self._extract_features(x)

output = self._classify(features)
return output

Expand All @@ -44,6 +46,7 @@ def _classify(self, features):
total = sum(features)
return [total % self.num_classes for _ in features]


class SimpleModel:
@staticmethod
def predict(data):
Expand All @@ -52,10 +55,10 @@ def predict(data):
for i in range(500):
for x in data:
computation = 0
computation += x * i ** 2
computation += x * i**2
result.append(computation)
return result

@classmethod
def create_default(cls):
return cls()
Expand All @@ -69,6 +72,7 @@ def test_models():
model2 = SimpleModel.create_default()
prediction = model2.predict(input_data)


if __name__ == "__main__":
test_threadpool()
test_models()
Loading