Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jul 2, 2025

📄 145,087% (1,450.87x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.58 seconds 2.47 milliseconds (best of 126 runs)

📝 Explanation and details

Here’s a rewritten, much faster version of your sorter function.
Your code implements a naive bubble sort in (O(n^2)) time.
Python’s built-in sort() uses Timsort ((O(n \log n))), which is much faster and also operates in-place.
The function signature and prints are preserved, and the return value is unchanged.

Rationale:

  • Replacing the nested loops with arr.sort() reduces sorting time complexity from (O(n^2)) to (O(n \log n)).
  • The sorting is done in-place, exactly as before.
  • This will give identical output, but run orders of magnitude faster for non-trivial lists.

No unnecessary swapping, temporary variables, or inner loops remain.
All original comments and output are preserved.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 54 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 7.45ms 24.0μs ✅30958%
test_bubble_sort.py::test_sort 874ms 162μs ✅537784%
test_bubble_sort_conditional.py::test_sort 11.7μs 8.50μs ✅37.2%
test_bubble_sort_import.py::test_sort 875ms 158μs ✅552132%
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 875ms 163μs ✅534917%
test_bubble_sort_parametrized.py::test_sort_parametrized 539ms 162μs ✅332024%
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 138μs 53.7μs ✅158%
🌀 Generated Regression Tests and Runtime
import random  # used for generating large random lists
import string  # used for string test cases
import sys  # used for maxsize/minsize edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# 1. Basic Test Cases

def test_sorter_empty_list():
    # Test sorting an empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_single_element():
    # Test sorting a list with a single element
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_sorted_list():
    # Test sorting a list that is already sorted
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_reverse_sorted_list():
    # Test sorting a list sorted in descending order
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_unsorted_list():
    # Test sorting a typical unsorted list
    arr = [3, 1, 4, 2, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_with_duplicates():
    # Test sorting a list with duplicate elements
    arr = [3, 1, 2, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_negative_numbers():
    # Test sorting a list with negative numbers
    arr = [-3, -1, -4, -2, 0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_floats():
    # Test sorting a list with floating point numbers
    arr = [3.1, 2.4, 5.6, 1.2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_mixed_int_float():
    # Test sorting a list with both ints and floats
    arr = [3, 1.5, 2, 4.5, 0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_strings():
    # Test sorting a list of strings
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_strings_case_sensitive():
    # Test sorting a list of strings with different cases
    arr = ["Banana", "apple", "Cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

# 2. Edge Test Cases

def test_sorter_all_equal_elements():
    # Test sorting a list where all elements are equal
    arr = [7, 7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_min_max_int():
    # Test sorting a list with min and max integer values
    arr = [sys.maxsize, 0, -sys.maxsize-1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_negative_and_positive():
    # Test sorting a list with large negative and positive values
    arr = [-999999999, 123456789, 0, 999999999, -123456789]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_unicode_strings():
    # Test sorting a list of unicode strings
    arr = ["ápple", "apple", "äpple"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_empty_strings():
    # Test sorting a list with empty strings and non-empty strings
    arr = ["", "a", "b", ""]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_single_character_strings():
    # Test sorting a list of single-character strings
    arr = ["d", "a", "c", "b"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_already_sorted_large_range():
    # Test sorting a list with a large range that is already sorted
    arr = list(range(-500, 500))
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_reverse_sorted_large_range():
    # Test sorting a list with a large range in reverse order
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_list_with_none_raises():
    # Test that sorting a list with None raises a TypeError
    arr = [1, None, 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_list_with_incomparable_types_raises():
    # Test that sorting a list with incomparable types raises a TypeError
    arr = [1, "two", 3]
    with pytest.raises(TypeError):
        sorter(arr.copy())

# 3. Large Scale Test Cases

def test_sorter_large_random_integers():
    # Test sorting a large list of random integers
    arr = random.sample(range(-100000, -99000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_identical_elements():
    # Test sorting a large list of identical elements
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_random_floats():
    # Test sorting a large list of random floats
    arr = [random.uniform(-1e6, 1e6) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_random_strings():
    # Test sorting a large list of random strings
    arr = [
        ''.join(random.choices(string.ascii_letters, k=5))
        for _ in range(1000)
    ]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_sorted_list():
    # Test sorting a large list that is already sorted
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_reverse_sorted_list():
    # Test sorting a large list in reverse order
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_list_with_duplicates():
    # Test sorting a large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large scale random test data
import string  # used for string sorting tests
import sys  # used for maxsize edge case

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# 1. Basic Test Cases

def test_sorter_basic_sorted():
    # Already sorted list
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_reverse():
    # Reverse sorted list
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_unsorted():
    # Random unsorted list
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_duplicates():
    # List with duplicates
    arr = [2, 3, 2, 1, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_negative_numbers():
    # List with negative numbers
    arr = [-1, -3, 2, 0, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_single_element():
    # Single element list
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_two_elements():
    # Two element list
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_all_duplicates():
    # All elements the same
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_strings():
    # Test with strings
    arr = ["banana", "apple", "pear"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_basic_floats():
    # Test with floats
    arr = [3.1, 2.4, 5.6, 1.0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

# 2. Edge Test Cases

def test_sorter_edge_empty():
    # Empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_large_numbers():
    # List with very large and very small numbers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 999999999, -999999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_mixed_signs():
    # List with positive, negative, and zero
    arr = [0, -1, 1, -2, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_strings_case():
    # Test with strings with different cases
    arr = ["apple", "Banana", "banana", "Apple"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_unicode():
    # Test with unicode strings
    arr = ["á", "a", "ä", "â"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_all_negative():
    # All negative numbers
    arr = [-5, -10, -3, -1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_all_zero():
    # All zeros
    arr = [0, 0, 0, 0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_mixed_types_raises():
    # List with mixed types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy())

def test_sorter_edge_nan_inf():
    # List with float('nan'), float('inf'), float('-inf')
    arr = [float('nan'), 1.0, float('inf'), float('-inf'), 0.0]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_edge_long_strings():
    # Test with very long strings
    arr = ["a"*100, "b"*99, "a"*101]
    codeflash_output = sorter(arr.copy()); result = codeflash_output

# 3. Large Scale Test Cases

def test_sorter_large_sorted():
    # Large already sorted list (performance and correctness)
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_reverse():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_random():
    # Large random list
    arr = random.sample(range(1000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=10)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output

def test_sorter_large_floats():
    # Large list of random floats
    arr = [random.uniform(-10000, 10000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mcmfzrgt and push.

Codeflash

Here’s a rewritten, much faster version of your sorter function.  
Your code implements a naive bubble sort in \(O(n^2)\) time.  
Python’s **built-in sort()** uses **Timsort** (\(O(n \log n)\)), which is much faster and also operates in-place.  
The function signature and prints are preserved, and the return value is unchanged.



**Rationale:**  
- Replacing the nested loops with `arr.sort()` reduces sorting time complexity from \(O(n^2)\) to \(O(n \log n)\).
- The sorting is done in-place, exactly as before.
- This will give identical output, but run orders of magnitude faster for non-trivial lists.

**No unnecessary swapping, temporary variables, or inner loops remain.**  
**All original comments and output are preserved.**
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 2, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 July 2, 2025 21:02
@aseembits93 aseembits93 closed this Jul 2, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mcmfzrgt branch July 2, 2025 21:28
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant