Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jul 22, 2025

📄 210% (2.10x) speedup for postprocess in codeflash/process/infer.py

⏱️ Runtime : 6.64 milliseconds 2.14 milliseconds (best of 563 runs)

📝 Explanation and details

Here’s an optimized version of your code with the following improvements.

  • Avoid repeated computation: np.exp(logits) was computed more than once per value in sigmoid_stable. Cache where possible.
  • Avoid flattening with reshape: Use .ravel() for a fast view rather than .reshape if you don't need a copy.
  • Vectorized selection: Use np.argpartition for O(n) partial selection instead of full sort (np.argsort) when only top K needed; sort only those afterward for correct order.
  • Preallocate output: Preallocate fixed-size array when possible.

Here’s the improved code.

Notes:

  • sigmoid_stable does not call np.exp(x) and np.exp(-x) separately for each value, instead using np.exp(-np.abs(x)), making it slightly faster and more numerically stable.
  • Uses np.argpartition(..., k) to efficiently get top K indices. Only these are then sorted by value.
  • .ravel() instead of .reshape(-1) for flattening, which is faster when possible.
  • Output structure and function signatures are preserved.
  • All comments are kept unless relating to changed code.

This should noticeably speed up use on large arrays or large batch sizes.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 36 Passed
⏪ Replay Tests 1 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import numpy as np
# imports
import pytest  # used for our unit tests
from codeflash.process.infer import postprocess

# unit tests

# -------------------------------
# 1. Basic Test Cases
# -------------------------------

def test_basic_single_batch_single_query_single_class():
    # Shape: (1, 1, 1)
    logits = np.array([[[0.0]]])
    codeflash_output = postprocess(logits, max_detections=1); result = codeflash_output
    
def test_basic_single_batch_multiple_queries_classes():
    # Shape: (1, 2, 2)
    logits = np.array([[[0.1, 0.5], [0.3, -0.2]]])
    # Sigmoid: [ [0.52498, 0.62245], [0.57444, 0.45017] ]
    # Flattened: [0.52498, 0.62245, 0.57444, 0.45017]
    # Sorted: [1,2,0,3]
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

def test_basic_multiple_batches():
    # Shape: (2, 1, 2)
    logits = np.array([
        [[0.2, 0.8]],
        [[-0.5, 0.0]]
    ])
    codeflash_output = postprocess(logits, max_detections=1); result = codeflash_output

def test_basic_max_detections_greater_than_elements():
    # Shape: (1, 2, 2) = 4 elements
    logits = np.array([[[1, 2], [3, 4]]])
    # Request more than available
    codeflash_output = postprocess(logits, max_detections=10); result = codeflash_output

# -------------------------------
# 2. Edge Test Cases
# -------------------------------

def test_edge_zero_logits():
    # All zeros: sigmoid(0) = 0.5
    logits = np.zeros((1, 3, 2))
    codeflash_output = postprocess(logits, max_detections=3); result = codeflash_output

def test_edge_negative_logits():
    # All negative values
    logits = np.array([[[-1, -2], [-3, -4]]])
    # Sigmoid: [0.2689, 0.1192, 0.0474, 0.01799]
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

def test_edge_large_logits():
    # Test with very large positive and negative values
    logits = np.array([[[1000, -1000], [100, -100]]])
    # Sigmoid(1000) ~ 1, sigmoid(-1000) ~ 0, etc.
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

def test_edge_single_element():
    # Shape: (1,1,1)
    logits = np.array([[[5.0]]])
    codeflash_output = postprocess(logits, max_detections=1); result = codeflash_output

def test_edge_empty_batch():
    # batch_size=0, shape: (0, 2, 2)
    logits = np.empty((0,2,2))
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

def test_edge_zero_queries_or_classes():
    # num_queries=0
    logits = np.empty((1,0,2))
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

    # num_classes=0
    logits = np.empty((1,2,0))
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

def test_edge_max_detections_zero():
    # Should return empty indices for each batch
    logits = np.random.randn(2,3,4)
    codeflash_output = postprocess(logits, max_detections=0); result = codeflash_output

def test_edge_tied_logits():
    # All logits are the same, so all sigmoid values are equal
    logits = np.ones((1,2,2))
    codeflash_output = postprocess(logits, max_detections=3); result = codeflash_output

def test_edge_non_integer_logits():
    # Use float values
    logits = np.array([[[0.1, 0.2], [0.3, 0.4]]])
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output

# -------------------------------
# 3. Large Scale Test Cases
# -------------------------------

def test_large_batch():
    # Large batch size, small queries/classes
    logits = np.random.randn(100, 2, 3)  # 100 batches
    codeflash_output = postprocess(logits, max_detections=2); result = codeflash_output
    for batch in result:
        pass

def test_large_queries_classes():
    # Single batch, large queries/classes
    logits = np.random.randn(1, 30, 30)  # 900 elements
    codeflash_output = postprocess(logits, max_detections=10); result = codeflash_output

def test_large_max_detections_equals_elements():
    # max_detections == num_elements
    logits = np.random.randn(1, 20, 20)  # 400 elements
    codeflash_output = postprocess(logits, max_detections=400); result = codeflash_output

def test_large_max_detections_exceeds_elements():
    # max_detections > num_elements
    logits = np.random.randn(1, 10, 10)  # 100 elements
    codeflash_output = postprocess(logits, max_detections=150); result = codeflash_output

def test_large_randomized_content():
    # Stress test with random values and multiple batches
    np.random.seed(42)
    logits = np.random.uniform(-10, 10, size=(10, 10, 10))  # 10 batches, 100 elements each
    codeflash_output = postprocess(logits, max_detections=5); result = codeflash_output
    for batch in result:
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import numpy as np
# imports
import pytest  # used for our unit tests
from codeflash.process.infer import postprocess

# unit tests

# 1. Basic Test Cases

def test_postprocess_single_batch_simple():
    # Single batch, 2 queries, 2 classes, simple logits
    logits = np.array([[[0, 1], [2, 3]]])  # shape (1,2,2)
    # sigmoid: [[0.5, ~0.731], [~0.881, ~0.953]]
    # flattened: [0.5, 0.731, 0.881, 0.953]
    # sorted: [0.953, 0.881, 0.731, 0.5] -> indices [3,2,1,0]
    codeflash_output = postprocess(logits, max_detections=2); out = codeflash_output

def test_postprocess_multiple_batches():
    # Two batches, 1 query, 3 classes
    logits = np.array([
        [[0, 1, 2]],
        [[-1, -2, -3]]
    ])
    # batch 0: [0.5, 0.731, 0.881]; batch 1: [0.269, 0.119, 0.047]
    codeflash_output = postprocess(logits, max_detections=1); out = codeflash_output

def test_postprocess_max_detections_greater_than_elements():
    # max_detections > total elements
    logits = np.array([[[1, 2], [3, 4]]])  # shape (1,2,2) -> 4 elements
    codeflash_output = postprocess(logits, max_detections=10); out = codeflash_output

def test_postprocess_max_detections_equals_elements():
    # max_detections == total elements
    logits = np.array([[[1, 2], [3, 4]]])
    codeflash_output = postprocess(logits, max_detections=4); out = codeflash_output

# 2. Edge Test Cases

def test_postprocess_all_zeros():
    # All logits are zero, so all sigmoid are 0.5, ties resolved by np.argsort (lowest index first)
    logits = np.zeros((1, 2, 3))  # shape (1,2,3) -> 6 elements
    codeflash_output = postprocess(logits, max_detections=3); out = codeflash_output

def test_postprocess_negative_logits():
    # All logits negative, sigmoid < 0.5
    logits = np.array([[[-1, -2], [-3, -4]]])
    # sigmoid: [[0.269, 0.119], [0.047, 0.018]]
    # sorted: [0.269, 0.119, 0.047, 0.018] -> indices [0,1,2,3]
    codeflash_output = postprocess(logits, max_detections=2); out = codeflash_output

def test_postprocess_large_positive_logits():
    # Large positive logits, sigmoid ~1
    logits = np.full((1, 2, 2), 1000)
    codeflash_output = postprocess(logits, max_detections=2); out = codeflash_output

def test_postprocess_large_negative_logits():
    # Large negative logits, sigmoid ~0
    logits = np.full((1, 2, 2), -1000)
    codeflash_output = postprocess(logits, max_detections=2); out = codeflash_output

def test_postprocess_empty_batch():
    # Empty batch, should return empty list
    logits = np.zeros((0, 2, 2))
    codeflash_output = postprocess(logits, max_detections=2); out = codeflash_output

def test_postprocess_single_element():
    # Only one element
    logits = np.array([[[42]]])
    codeflash_output = postprocess(logits, max_detections=1); out = codeflash_output

def test_postprocess_zero_max_detections():
    # max_detections = 0, should return empty indices for each batch
    logits = np.ones((2, 2, 2))
    codeflash_output = postprocess(logits, max_detections=0); out = codeflash_output

def test_postprocess_non_integer_logits():
    # Float logits
    logits = np.array([[[0.1, 0.2], [0.3, 0.4]]])
    codeflash_output = postprocess(logits, max_detections=2); out = codeflash_output

def test_postprocess_tied_values():
    # Multiple identical max values
    logits = np.array([[[1, 1], [0, 0]]])
    # sigmoid: [0.731, 0.731, 0.5, 0.5]
    codeflash_output = postprocess(logits, max_detections=3); out = codeflash_output

# 3. Large Scale Test Cases

def test_postprocess_large_batch():
    # Large batch size, moderate queries/classes
    logits = np.random.randn(100, 3, 3)
    codeflash_output = postprocess(logits, max_detections=5); out = codeflash_output
    for indices in out:
        pass

def test_postprocess_large_queries_classes():
    # Single batch, large queries and classes
    logits = np.random.uniform(-5, 5, size=(1, 30, 30))
    codeflash_output = postprocess(logits, max_detections=10); out = codeflash_output

def test_postprocess_max_detections_equals_total_large():
    # max_detections == total elements (edge of allowed size)
    logits = np.random.randn(1, 31, 31)  # 961 elements
    codeflash_output = postprocess(logits, max_detections=961); out = codeflash_output


def test_postprocess_multiple_batches_large():
    # Multiple batches, each with moderate size
    logits = np.random.randn(10, 10, 10)
    codeflash_output = postprocess(logits, max_detections=7); out = codeflash_output
    for indices in out:
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from codeflash.process.infer import postprocess
⏪ Replay Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup

To edit these changes git checkout codeflash/optimize-postprocess-mde2fc44 and push.

Codeflash

misrasaurabh1 and others added 3 commits July 21, 2025 20:50
Signed-off-by: Saurabh Misra <[email protected]>
Here’s an optimized version of your code with the following improvements.

- **Avoid repeated computation**: np.exp(logits) was computed more than once per value in sigmoid_stable. Cache where possible.
- **Avoid flattening with reshape**: Use .ravel() for a fast view rather than .reshape if you don't need a copy.
- **Vectorized selection**: Use np.argpartition for O(n) partial selection instead of full sort (np.argsort) when only top K needed; sort only those afterward for correct order.
- **Preallocate output**: Preallocate fixed-size array when possible.

Here’s the improved code.



**Notes:**
- `sigmoid_stable` does not call np.exp(x) and np.exp(-x) separately for each value, instead using `np.exp(-np.abs(x))`, making it slightly faster and more numerically stable.
- Uses `np.argpartition(..., k)` to efficiently get top K indices. Only these are then sorted by value.
- `.ravel()` instead of `.reshape(-1)` for flattening, which is faster when possible.  
- Output structure and function signatures are preserved.  
- All comments are kept unless relating to changed code.

This should noticeably speed up use on large arrays or large batch sizes.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 22, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 July 22, 2025 04:59
@misrasaurabh1 misrasaurabh1 changed the base branch from main to optimize-infer July 22, 2025 05:31
@misrasaurabh1 misrasaurabh1 changed the base branch from optimize-infer to main July 22, 2025 05:53
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-postprocess-mde2fc44 branch July 24, 2025 20:54
@misrasaurabh1 misrasaurabh1 restored the codeflash/optimize-postprocess-mde2fc44 branch July 29, 2025 03:05
@misrasaurabh1 misrasaurabh1 reopened this Jul 29, 2025
@codeflash-ai codeflash-ai deleted a comment from github-actions bot Jul 29, 2025
@codeflash-ai codeflash-ai deleted a comment from github-actions bot Jul 29, 2025
@misrasaurabh1 misrasaurabh1 changed the base branch from main to optimize-infer July 29, 2025 18:37
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-postprocess-mde2fc44 branch July 29, 2025 23:17
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI Review effort 2/5

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant