Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jul 22, 2025

📄 26% (0.26x) speedup for sigmoid_stable in codeflash/process/infer.py

⏱️ Runtime : 1.78 milliseconds 1.42 milliseconds (best of 298 runs)

📝 Explanation and details

Here is an optimized version of your sigmoid_stable function. The performance bottleneck is due to repeated calls to np.exp(x) within the np.where function, causing unnecessary recomputation over potentially large arrays.

We'll precompute exp_x = np.exp(x) and exp_neg_x = np.exp(-x) outside of np.where to avoid recomputation and improve cache use. This significantly reduces redundant computation for both branches of the np.where.

Explanation of Changes:

  • Precompute both exp_neg_x and exp_x out of np.where to avoid duplicate calculations.
  • This reduces two extra expensive np.exp calls down to one each, regardless of input.

This will make the function significantly faster, especially on large arrays. The output is mathematically identical.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 43 Passed
⏪ Replay Tests 1 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import numpy as np
# imports
import pytest  # used for our unit tests
from codeflash.process.infer import sigmoid_stable

# unit tests

# ----------------------------
# 1. Basic Test Cases
# ----------------------------

def test_sigmoid_zero():
    # Sigmoid(0) should be exactly 0.5
    codeflash_output = sigmoid_stable(0.0)

def test_sigmoid_positive_scalar():
    # Test a few positive scalars
    codeflash_output = sigmoid_stable(1.0)
    codeflash_output = sigmoid_stable(2.0)
    codeflash_output = sigmoid_stable(10.0)

def test_sigmoid_negative_scalar():
    # Test a few negative scalars
    codeflash_output = sigmoid_stable(-1.0)
    codeflash_output = sigmoid_stable(-2.0)
    codeflash_output = sigmoid_stable(-10.0)

def test_sigmoid_array_basic():
    # Test a small array of mixed values
    x = np.array([-1.0, 0.0, 1.0])
    expected = 1 / (1 + np.exp(-x))
    codeflash_output = sigmoid_stable(x); result = codeflash_output


def test_sigmoid_large_positive():
    # For large positive values, sigmoid should approach 1.0
    x = 1000.0
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_large_negative():
    # For large negative values, sigmoid should approach 0.0
    x = -1000.0
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_extreme_array():
    # Array with extreme values
    x = np.array([-1000.0, -50.0, 0.0, 50.0, 1000.0])
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    expected = np.array([0.0, 1 / (1 + np.exp(50.0)), 0.5, 1 / (1 + np.exp(-50.0)), 1.0])


def test_sigmoid_empty_array():
    # Should handle empty input gracefully
    x = np.array([])
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_dtype_preservation():
    # Output should be float64 for float input, float32 for float32 input
    x64 = np.array([0.0, 1.0], dtype=np.float64)
    x32 = np.array([0.0, 1.0], dtype=np.float32)
    codeflash_output = sigmoid_stable(x64); result64 = codeflash_output
    codeflash_output = sigmoid_stable(x32); result32 = codeflash_output

def test_sigmoid_int_input():
    # Should accept integer input and return float output
    x = np.array([-1, 0, 1], dtype=np.int32)
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    expected = 1 / (1 + np.exp(-x))

# ----------------------------
# 3. Large Scale Test Cases
# ----------------------------

def test_sigmoid_large_array():
    # Test performance and correctness on a large array of values
    x = np.linspace(-20, 20, 1000)
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    expected = 1 / (1 + np.exp(-x))

def test_sigmoid_large_extreme_array():
    # Array with many extreme values to ensure stability and no overflow
    x = np.concatenate([
        np.full(500, -1000.0),
        np.full(500, 1000.0)
    ])
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_large_random_array():
    # Test with a large array of random floats
    rng = np.random.default_rng(42)
    x = rng.normal(0, 10, 1000)
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    # Spot check a few values for correctness
    for idx in [0, 100, 500, 999]:
        expected = 1 / (1 + np.exp(-x[idx]))
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import numpy as np
# imports
import pytest  # used for our unit tests
from codeflash.process.infer import sigmoid_stable


def test_sigmoid_positive_scalar():
    # Sigmoid(2) should be close to 1/(1+exp(-2))
    expected = 1 / (1 + np.exp(-2))

def test_sigmoid_negative_scalar():
    # Sigmoid(-2) should be close to 1/(1+exp(2))
    expected = 1 / (1 + np.exp(2))

def test_sigmoid_small_positive():
    # Test with a small positive value
    expected = 1 / (1 + np.exp(-0.01))

def test_sigmoid_small_negative():
    # Test with a small negative value
    expected = 1 / (1 + np.exp(0.01))

def test_sigmoid_array_basic():
    # Test with a simple array of values
    x = np.array([-1, 0, 1])
    expected = 1 / (1 + np.exp(-x))
    codeflash_output = sigmoid_stable(x); result = codeflash_output

# ----------------------
# 2. Edge Test Cases
# ----------------------

def test_sigmoid_large_positive():
    # For large positive x, sigmoid should approach 1
    x = 1000
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_large_negative():
    # For large negative x, sigmoid should approach 0
    x = -1000
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_extreme_values_array():
    # Test with array containing extreme values
    x = np.array([-1000, 0, 1000])
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    expected = np.array([0.0, 0.5, 1.0])


def test_sigmoid_integer_input():
    # Test with integer input
    x = 5
    expected = 1 / (1 + np.exp(-5))


def test_sigmoid_very_small_values():
    # Test with very small values (close to zero)
    x = np.array([-1e-12, 0, 1e-12])
    expected = 1 / (1 + np.exp(-x))
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_dtype_preservation():
    # Ensure output dtype is float even if input is int
    x = np.array([1, 2, 3], dtype=int)
    codeflash_output = sigmoid_stable(x); result = codeflash_output

# ----------------------
# 3. Large Scale Test Cases
# ----------------------

def test_sigmoid_large_array():
    # Test with a large array of values
    x = np.linspace(-10, 10, 1000)
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    expected = 1 / (1 + np.exp(-x))

def test_sigmoid_large_extreme_array():
    # Test with a large array including extreme values
    x = np.concatenate([np.linspace(-1000, -500, 250), np.linspace(-5, 5, 500), np.linspace(500, 1000, 250)])
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    # For x << 0, sigmoid ~ 0; for x >> 0, sigmoid ~ 1; for midrange, compute exactly
    expected = np.where(x < -20, 0.0, np.where(x > 20, 1.0, 1 / (1 + np.exp(-x))))

def test_sigmoid_performance_large_random():
    # Test with a large random array (performance and correctness)
    rng = np.random.default_rng(seed=42)
    x = rng.normal(loc=0, scale=100, size=1000)
    codeflash_output = sigmoid_stable(x); result = codeflash_output
    # For very large positive/negative, expected is 1/0; else compute exactly
    expected = np.where(x < -20, 0.0, np.where(x > 20, 1.0, 1 / (1 + np.exp(-x))))

# ----------------------
# Additional Robustness Cases
# ----------------------

def test_sigmoid_shape_preservation():
    # Output shape should match input shape
    x = np.random.randn(10, 10)
    codeflash_output = sigmoid_stable(x); result = codeflash_output

def test_sigmoid_scalar_vs_array_consistency():
    # Scalar and array input for same value should yield same result
    for val in [-10, 0, 10]:
        codeflash_output = sigmoid_stable(val); scalar_res = codeflash_output
        array_res = sigmoid_stable(np.array([val]))[0]

def test_sigmoid_object_input_raises():
    # Non-numeric input should raise an error
    with pytest.raises(TypeError):
        sigmoid_stable("not a number")
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
⏪ Replay Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup

To edit these changes git checkout codeflash/optimize-sigmoid_stable-mdf1ifk6 and push.

Codeflash

Here is an optimized version of your `sigmoid_stable` function. The performance bottleneck is due to repeated calls to `np.exp(x)` within the `np.where` function, causing unnecessary recomputation over potentially large arrays.

We'll precompute `exp_x = np.exp(x)` and `exp_neg_x = np.exp(-x)` **outside** of `np.where` to avoid recomputation and improve cache use. This significantly reduces redundant computation for both branches of the `np.where`.



**Explanation of Changes:**
- Precompute both `exp_neg_x` and `exp_x` out of `np.where` to avoid duplicate calculations.
- This reduces two extra expensive `np.exp` calls down to one each, regardless of input.

This will make the function significantly faster, especially on large arrays. The output is mathematically identical.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 22, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 July 22, 2025 21:22
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sigmoid_stable-mdf1ifk6 branch July 24, 2025 20:54
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant