Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jul 28, 2025

📄 172,043% (1,720.43x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.36 seconds 1.95 milliseconds (best of 536 runs)

📝 Explanation and details

Here’s a faster version of your code using the built-in sort() function, which is highly optimized (Timsort, O(n log n) time in the average and worst case), making it much faster than your current bubble sort logic (O(n²)).
All functionality and output are preserved.

This version retains your logging and return semantics while providing a significant speed boost.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 60 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 6.90ms 17.4μs ✅39609%
test_bubble_sort.py::test_sort 827ms 143μs ✅575196%
test_bubble_sort_conditional.py::test_sort 5.54μs 3.12μs ✅77.3%
test_bubble_sort_import.py::test_sort 833ms 141μs ✅589411%
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 826ms 144μs ✅570860%
test_bubble_sort_parametrized.py::test_sort_parametrized 506ms 140μs ✅360551%
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 103μs 21.1μs ✅388%
🌀 Generated Regression Tests and Runtime
import random  # used for generating large random lists
import string  # used for string sorting tests
import sys  # used for maxsize in edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# ------------------------
# 1. BASIC TEST CASES
# ------------------------

def test_sorter_empty_list():
    # Sorting an empty list should return an empty list
    codeflash_output = sorter([]) # 4.50μs -> 3.00μs (50.0% faster)

def test_sorter_single_element():
    # Sorting a single-element list should return the same list
    codeflash_output = sorter([42]) # 4.29μs -> 3.00μs (43.0% faster)

def test_sorter_two_elements_sorted():
    # Already sorted two elements
    codeflash_output = sorter([1, 2]) # 4.38μs -> 3.00μs (45.8% faster)

def test_sorter_two_elements_unsorted():
    # Unsorted two elements
    codeflash_output = sorter([2, 1]) # 4.08μs -> 2.88μs (42.0% faster)

def test_sorter_multiple_integers_sorted():
    # Already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5]) # 4.62μs -> 3.04μs (52.1% faster)

def test_sorter_multiple_integers_unsorted():
    # Unsorted list
    codeflash_output = sorter([5, 3, 1, 4, 2]) # 4.96μs -> 3.04μs (63.0% faster)

def test_sorter_duplicates():
    # List with duplicate elements
    codeflash_output = sorter([3, 1, 2, 3, 2]) # 4.75μs -> 3.04μs (56.1% faster)

def test_sorter_negative_numbers():
    # List with negative numbers
    codeflash_output = sorter([-2, -5, 3, 0, 2]) # 4.79μs -> 3.12μs (53.3% faster)

def test_sorter_mixed_positive_negative():
    # List with both positive and negative numbers
    codeflash_output = sorter([0, -1, 5, -10, 3]) # 4.83μs -> 3.12μs (54.7% faster)

def test_sorter_all_equal():
    # List with all elements the same
    codeflash_output = sorter([7, 7, 7, 7]) # 4.21μs -> 2.92μs (44.3% faster)

def test_sorter_floats():
    # List with floating point numbers
    codeflash_output = sorter([2.5, 3.1, 0.0, -1.2]) # 6.38μs -> 3.50μs (82.1% faster)

def test_sorter_strings():
    # List of strings (alphabetical order)
    codeflash_output = sorter(['banana', 'apple', 'cherry']) # 4.67μs -> 3.12μs (49.3% faster)

def test_sorter_mixed_case_strings():
    # List of strings with mixed case (Python sorts uppercase before lowercase)
    codeflash_output = sorter(['Banana', 'apple', 'Cherry']) # 4.50μs -> 3.21μs (40.3% faster)

# ------------------------
# 2. EDGE TEST CASES
# ------------------------

def test_sorter_large_numbers():
    # List with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 999999999, -999999999]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()) # 6.17μs -> 3.46μs (78.3% faster)

def test_sorter_already_sorted_descending():
    # List sorted in descending order
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()) # 5.08μs -> 3.12μs (62.7% faster)

def test_sorter_alternating_high_low():
    # Alternating high and low values
    arr = [1, 100, 2, 99, 3, 98]
    codeflash_output = sorter(arr.copy()) # 5.12μs -> 3.12μs (64.0% faster)

def test_sorter_all_zeros():
    # List of all zeros
    arr = [0, 0, 0, 0, 0]
    codeflash_output = sorter(arr.copy()) # 4.33μs -> 2.96μs (46.4% faster)

def test_sorter_single_negative():
    # Single negative value
    arr = [-1]
    codeflash_output = sorter(arr.copy()) # 3.71μs -> 2.88μs (29.0% faster)

def test_sorter_strings_with_empty():
    # List of strings including empty string
    arr = ["apple", "", "banana"]
    codeflash_output = sorter(arr.copy()) # 4.50μs -> 3.12μs (44.0% faster)

def test_sorter_unicode_strings():
    # List of unicode strings
    arr = ["éclair", "apple", "Éclair", "banana"]
    codeflash_output = sorter(arr.copy()) # 6.17μs -> 3.62μs (70.1% faster)

def test_sorter_floats_and_integers():
    # List with both floats and integers (Python 3 allows comparison)
    arr = [1.5, 2, 0.5, 2.0, 1]
    codeflash_output = sorter(arr.copy()) # 6.75μs -> 3.83μs (76.1% faster)

def test_sorter_large_negative_to_positive():
    # Range from large negative to large positive
    arr = [-999, 0, 999]
    codeflash_output = sorter(arr.copy()) # 4.46μs -> 3.00μs (48.6% faster)

def test_sorter_reverse_sorted_strings():
    # List of strings in reverse order
    arr = ['z', 'y', 'x', 'a']
    codeflash_output = sorter(arr.copy()) # 4.83μs -> 3.08μs (56.8% faster)

def test_sorter_list_with_none_raises():
    # List with None should raise TypeError in Python 3
    arr = [1, None, 3]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.92μs -> 1.92μs (52.2% faster)

def test_sorter_list_with_unorderable_types_raises():
    # List with unorderable types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 2.58μs -> 1.83μs (40.8% faster)

# ------------------------
# 3. LARGE SCALE TEST CASES
# ------------------------

def test_sorter_large_sorted_list():
    # Large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()) # 18.7ms -> 29.2μs (63927% faster)

def test_sorter_large_reverse_sorted_list():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    expected = list(range(1000))
    codeflash_output = sorter(arr.copy()) # 31.0ms -> 29.6μs (104570% faster)

def test_sorter_large_random_list():
    # Large random list of integers
    arr = random.sample(range(-10000, -9000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()) # 28.4ms -> 63.6μs (44596% faster)

def test_sorter_large_list_with_duplicates():
    # Large list with many duplicates
    arr = [random.choice([0, 1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()) # 25.3ms -> 52.0μs (48489% faster)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()) # 29.7ms -> 89.2μs (33213% faster)

def test_sorter_large_floats():
    # Large list of random floats
    arr = [random.uniform(-1000, 1000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()) # 27.2ms -> 281μs (9537% faster)

def test_sorter_large_all_equal():
    # Large list where all elements are the same
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()) # 18.3ms -> 27.8μs (65727% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large random lists
import string  # used for generating string test cases
import sys  # used for edge integer cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# ------------------- BASIC TEST CASES -------------------

def test_sorter_empty_list():
    # Sorting an empty list should return an empty list
    codeflash_output = sorter([]) # 4.42μs -> 3.04μs (45.2% faster)

def test_sorter_single_element():
    # Sorting a single-element list should return the same single-element list
    codeflash_output = sorter([42]) # 4.08μs -> 3.04μs (34.3% faster)

def test_sorter_already_sorted():
    # Sorting an already sorted list should leave it unchanged
    codeflash_output = sorter([1, 2, 3, 4, 5]) # 4.50μs -> 3.08μs (45.9% faster)

def test_sorter_reverse_sorted():
    # Sorting a reverse-sorted list should return the sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1]) # 5.08μs -> 3.00μs (69.4% faster)

def test_sorter_unsorted():
    # Sorting a randomly ordered list
    codeflash_output = sorter([3, 1, 4, 5, 2]) # 4.88μs -> 3.04μs (60.3% faster)

def test_sorter_duplicates():
    # Sorting a list with duplicate elements
    codeflash_output = sorter([2, 3, 2, 1, 3]) # 4.67μs -> 3.21μs (45.5% faster)

def test_sorter_negative_numbers():
    # Sorting a list with negative numbers
    codeflash_output = sorter([0, -1, -3, 2, 1]) # 4.62μs -> 3.17μs (46.1% faster)

def test_sorter_all_equal():
    # Sorting a list where all elements are the same
    codeflash_output = sorter([7, 7, 7, 7]) # 4.29μs -> 2.96μs (45.0% faster)

def test_sorter_floats():
    # Sorting a list with floating point numbers
    codeflash_output = sorter([3.2, 1.5, 2.8, 1.5]) # 5.62μs -> 3.79μs (48.3% faster)

def test_sorter_mixed_ints_floats():
    # Sorting a list with both ints and floats
    codeflash_output = sorter([1, 2.2, 0, 3.5, 2]) # 6.04μs -> 3.79μs (59.3% faster)

def test_sorter_strings():
    # Sorting a list of strings (lexicographical order)
    codeflash_output = sorter(["banana", "apple", "cherry"]) # 4.83μs -> 3.08μs (56.8% faster)

def test_sorter_strings_with_duplicates():
    # Sorting a list of strings with duplicates
    codeflash_output = sorter(["a", "c", "b", "a"]) # 4.83μs -> 3.25μs (48.7% faster)

def test_sorter_case_sensitive_strings():
    # Sorting a list of strings with different cases (capital letters come before lowercase)
    codeflash_output = sorter(["apple", "Banana", "banana", "Apple"]) # 4.83μs -> 3.17μs (52.6% faster)

# ------------------- EDGE TEST CASES -------------------

def test_sorter_large_negative_and_positive():
    # Sorting a list with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize, 0, -1, 1]
    codeflash_output = sorter(arr[:]) # 5.88μs -> 3.42μs (72.0% faster)

def test_sorter_all_negative():
    # Sorting a list with all negative numbers
    arr = [-5, -1, -3, -2]
    codeflash_output = sorter(arr[:]) # 4.54μs -> 3.08μs (47.3% faster)

def test_sorter_large_floats():
    # Sorting a list with very large and very small floats
    arr = [1.7e308, -1.7e308, 0.0, -2.5e-324, 2.5e-324]
    codeflash_output = sorter(arr[:])

def test_sorter_mixed_types_raises():
    # Sorting a list with incompatible types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr[:]) # 3.21μs -> 1.92μs (67.4% faster)

def test_sorter_nan_and_inf():
    # Sorting a list with float('nan'), float('inf'), float('-inf')
    arr = [float('nan'), float('inf'), float('-inf'), 0, 1]
    # The position of NaN is not guaranteed, but -inf should come first, then numbers, then inf, then nan
    codeflash_output = sorter(arr[:]); result = codeflash_output # 5.79μs -> 3.79μs (52.7% faster)

def test_sorter_unicode_strings():
    # Sorting a list of unicode strings
    arr = ["café", "apple", "banana", "ápple"]
    codeflash_output = sorter(arr[:]) # 5.71μs -> 3.71μs (53.9% faster)

def test_sorter_empty_strings():
    # Sorting a list with empty strings
    arr = ["", "a", "b", ""]
    codeflash_output = sorter(arr[:]) # 4.38μs -> 3.08μs (41.9% faster)

def test_sorter_large_identical_elements():
    # Sorting a list with a large number of identical elements
    arr = [42] * 100
    codeflash_output = sorter(arr[:]) # 136μs -> 6.04μs (2161% faster)

def test_sorter_mutation():
    # Ensure the function mutates the input list (in-place sort)
    arr = [3, 1, 2]
    sorter(arr) # 4.29μs -> 3.08μs (39.2% faster)

# ------------------- LARGE SCALE TEST CASES -------------------

def test_sorter_large_random_ints():
    # Sorting a large list of random integers
    arr = [random.randint(-10000, 10000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr[:]) # 28.4ms -> 59.5μs (47695% faster)

def test_sorter_large_sorted():
    # Sorting a large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr[:]) # 18.4ms -> 28.8μs (63777% faster)

def test_sorter_large_reverse_sorted():
    # Sorting a large reverse-sorted list
    arr = list(range(1000, 0, -1))
    codeflash_output = sorter(arr[:]) # 31.1ms -> 29.2μs (106294% faster)

def test_sorter_large_duplicates():
    # Sorting a large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr[:]) # 25.0ms -> 53.8μs (46472% faster)

def test_sorter_large_strings():
    # Sorting a large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr[:]) # 30.0ms -> 91.5μs (32730% faster)

def test_sorter_large_floats():
    # Sorting a large list of random floats
    arr = [random.uniform(-1e6, 1e6) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr[:]) # 26.4ms -> 283μs (9201% faster)

def test_sorter_large_all_equal():
    # Sorting a large list where all elements are equal
    arr = [7.7] * 1000
    codeflash_output = sorter(arr[:]) # 18.3ms -> 73.5μs (24796% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mdno8bi5 and push.

Codeflash

Here’s a faster version of your code using the built-in `sort()` function, which is highly optimized (Timsort, O(n log n) time in the average and worst case), making it much faster than your current bubble sort logic (O(n²)).  
All functionality and output are preserved.


This version retains your logging and return semantics while providing a significant speed boost.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 28, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 July 28, 2025 22:20
@codeflash-ai codeflash-ai bot closed this Jul 28, 2025
@codeflash-ai
Copy link
Contributor Author

codeflash-ai bot commented Jul 28, 2025

This PR has been automatically closed because the original PR #555 by misrasaurabh1 was closed.

@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mdno8bi5 branch July 28, 2025 22:22
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants