Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Oct 17, 2025

📄 167% (1.00x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 5.19 seconds 3.10 milliseconds (best of 351 runs)

📝 Explanation and details

The optimized code replaces a manual bubble sort implementation with Python's built-in arr.sort() method, delivering a massive 167,305% speedup.

Key optimization:

  • Algorithm change: Bubble sort has O(n²) time complexity, requiring nested loops that make ~73 million comparisons and ~45 million swaps for 1000-element arrays
  • Built-in sort: Python's arr.sort() uses Timsort, an optimized hybrid algorithm with O(n log n) average complexity that's implemented in C

Why this is dramatically faster:

  • Reduced operations: The line profiler shows the original code spent 29.8 seconds in nested loops, while the optimized version completes in 0.005 seconds
  • Native implementation: arr.sort() runs at C speed rather than interpreted Python bytecode
  • Algorithmic efficiency: Timsort is particularly fast on already-sorted or reverse-sorted data, explaining the exceptional speedups (47,835% - 76,959%) on large ordered arrays

Test case performance patterns:

  • Small arrays (5-10 elements): 28-109% speedup - overhead reduction is main benefit
  • Large arrays (1000 elements): 33,000-76,000% speedup - algorithmic improvement dominates
  • Best cases: Already sorted or reverse sorted large arrays show maximum gains due to Timsort's adaptive nature

The optimization maintains identical behavior including in-place sorting, return values, and print statements.

Correctness verification report:

Test Status
⏪ Replay Tests 🔘 None Found
⚙️ Existing Unit Tests 20 Passed
🔎 Concolic Coverage Tests 🔘 None Found
🌀 Generated Regression Tests 55 Passed
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 9.71ms 32.0μs ✅30200%
test_bubble_sort.py::test_sort 1.28s 286μs ✅448046%
test_bubble_sort_conditional.py::test_sort 9.67μs 4.67μs ✅107%
test_bubble_sort_import.py::test_sort 1.27s 284μs ✅446650%
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 1.28s 282μs ✅454660%
test_bubble_sort_parametrized.py::test_sort_parametrized 795ms 283μs ✅279948%
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 137μs 32.6μs ✅322%
🌀 Generated Regression Tests and Runtime
import random  # used for generating large random lists
import string  # used for string sorting tests
import sys  # used for maxsize in edge cases

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# -------------------------------
# Basic Test Cases
# -------------------------------

def test_sorter_basic_sorted():
    # Already sorted input
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.12μs -> 4.75μs (71.1% faster)

def test_sorter_basic_reverse():
    # Reverse sorted input
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.12μs -> 4.62μs (54.1% faster)

def test_sorter_basic_unsorted():
    # Unsorted input
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.38μs -> 4.54μs (40.4% faster)

def test_sorter_basic_duplicates():
    # List with duplicates
    arr = [2, 3, 2, 1, 4]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.38μs -> 4.46μs (43.0% faster)

def test_sorter_basic_all_equal():
    # All elements are equal
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.71μs -> 4.46μs (28.0% faster)

def test_sorter_basic_two_elements():
    # Two elements, unsorted
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.92μs -> 4.33μs (36.5% faster)

def test_sorter_basic_two_elements_sorted():
    # Two elements, already sorted
    arr = [1, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.04μs -> 4.33μs (39.4% faster)

# -------------------------------
# Edge Test Cases
# -------------------------------

def test_sorter_edge_empty():
    # Empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.38μs -> 4.00μs (109% faster)

def test_sorter_edge_single_element():
    # Single element
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.96μs -> 4.29μs (85.4% faster)

def test_sorter_edge_negative_numbers():
    # Negative numbers
    arr = [-3, -1, -2, -5, -4]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.29μs -> 4.54μs (60.5% faster)

def test_sorter_edge_mixed_signs():
    # Mixed positive and negative numbers
    arr = [0, -1, 3, -2, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.04μs -> 4.62μs (52.3% faster)

def test_sorter_edge_large_numbers():
    # Very large and very small integers
    arr = [sys.maxsize, -sys.maxsize - 1, 0, 999999999, -999999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.12μs -> 5.17μs (57.3% faster)

def test_sorter_edge_floats():
    # Floats and integers mixed
    arr = [1.5, 2, 0.5, 2.5, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.0μs -> 6.00μs (84.0% faster)

def test_sorter_edge_strings():
    # Sorting strings lexicographically
    arr = ["banana", "apple", "cherry", "date"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.00μs -> 4.79μs (46.1% faster)

def test_sorter_edge_unicode_strings():
    # Unicode strings
    arr = ["ápple", "apple", "äpple", "banana"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.33μs -> 5.12μs (62.6% faster)

def test_sorter_edge_case_sensitive():
    # Case sensitivity in strings
    arr = ["apple", "Banana", "banana", "Apple"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.38μs -> 4.62μs (37.8% faster)

def test_sorter_edge_already_sorted():
    # List is already sorted
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.17μs -> 4.58μs (34.6% faster)

def test_sorter_edge_reverse_sorted():
    # List is reverse sorted
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.54μs -> 4.50μs (45.4% faster)

def test_sorter_edge_stability():
    # Test stability: equal elements should retain relative order (for objects, not primitives)
    class Obj:
        def __init__(self, key, val):
            self.key = key
            self.val = val
        def __lt__(self, other):
            return self.key < other.key
        def __gt__(self, other):
            return self.key > other.key
        def __eq__(self, other):
            return self.key == other.key
        def __repr__(self):
            return f"Obj({self.key}, {self.val})"
    arr = [Obj(1, 'a'), Obj(2, 'b'), Obj(1, 'c'), Obj(2, 'd')]
    # After sorting by key, the order of 'a' before 'c' and 'b' before 'd' should be preserved
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.88μs -> 6.46μs (37.4% faster)

def test_sorter_edge_type_error():
    # List with incomparable types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 5.33μs -> 3.62μs (47.1% faster)

# -------------------------------
# Large Scale Test Cases
# -------------------------------

def test_sorter_large_sorted():
    # Large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.7ms -> 59.4μs (48211% faster)

def test_sorter_large_reverse():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 44.6ms -> 57.9μs (76959% faster)

def test_sorter_large_random():
    # Large random list of integers
    arr = random.sample(range(1000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 42.5ms -> 121μs (34919% faster)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 36.9ms -> 96.8μs (38086% faster)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 45.9ms -> 141μs (32374% faster)

def test_sorter_large_floats():
    # Large list of floats
    arr = [random.uniform(-1000, 1000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 40.4ms -> 450μs (8863% faster)

def test_sorter_large_negative_positive():
    # Large list with both negative and positive numbers
    arr = [random.randint(-1000, 1000) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 41.4ms -> 119μs (34489% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import random  # used for generating large random lists
import string  # used for string sorting tests
import sys  # used for maxsize edge case

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# --- BASIC TEST CASES ---

def test_sorter_basic_sorted():
    # Already sorted list should remain unchanged
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.1μs -> 4.71μs (136% faster)

def test_sorter_basic_reverse():
    # Reverse sorted list should be sorted ascending
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.08μs -> 4.58μs (54.5% faster)

def test_sorter_basic_unsorted():
    # Unsorted list with random order
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.67μs -> 4.58μs (45.5% faster)

def test_sorter_basic_duplicates():
    # List with duplicate elements
    arr = [3, 1, 2, 3, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.42μs -> 4.50μs (42.6% faster)

def test_sorter_basic_negative_numbers():
    # List with negative and positive numbers
    arr = [-1, -3, 2, 0, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.75μs -> 4.71μs (64.6% faster)

def test_sorter_basic_single_element():
    # List with a single element should remain unchanged
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.08μs -> 4.38μs (16.2% faster)

def test_sorter_basic_two_elements():
    # List with two elements in reverse order
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 5.25μs -> 4.38μs (20.0% faster)

# --- EDGE TEST CASES ---

def test_sorter_edge_empty_list():
    # Empty list should return empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 4.46μs -> 4.04μs (10.3% faster)

def test_sorter_edge_all_identical():
    # List where all elements are the same
    arr = [7] * 10
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.67μs -> 4.83μs (58.6% faster)

def test_sorter_edge_large_and_small_numbers():
    # List with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 999999, -999999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.67μs -> 5.21μs (47.2% faster)

def test_sorter_edge_floats():
    # List with floating point numbers
    arr = [3.1, 2.4, -1.2, 0.0, 2.4]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.08μs -> 5.75μs (58.0% faster)

def test_sorter_edge_strings():
    # List of strings (should sort lexicographically)
    arr = ["banana", "apple", "cherry", "date"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.96μs -> 4.83μs (44.0% faster)

def test_sorter_edge_mixed_case_strings():
    # List of strings with mixed case (lexicographic order is case-sensitive)
    arr = ["Banana", "apple", "Cherry", "date"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.25μs -> 4.71μs (32.8% faster)

def test_sorter_edge_unicode_strings():
    # List of unicode strings
    arr = ["α", "β", "γ", "δ", "ε"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.54μs -> 5.29μs (42.5% faster)

def test_sorter_edge_empty_strings():
    # List containing empty strings
    arr = ["", "a", "", "b"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 6.29μs -> 4.62μs (36.0% faster)

def test_sorter_edge_single_type_error():
    # List with mixed types should raise TypeError
    arr = [1, "a", 3]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 5.12μs -> 3.58μs (43.0% faster)

def test_sorter_edge_boolean_values():
    # List with boolean values (False < True)
    arr = [True, False, True, False]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.08μs -> 4.54μs (56.0% faster)

# --- LARGE SCALE TEST CASES ---

def test_sorter_large_sorted():
    # Large already sorted list (1000 elements)
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.4ms -> 59.3μs (47835% faster)

def test_sorter_large_reverse():
    # Large reverse sorted list (1000 elements)
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 44.1ms -> 58.3μs (75636% faster)

def test_sorter_large_random():
    # Large random list (1000 elements)
    arr = random.sample(range(-10000, -9000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 41.9ms -> 123μs (33731% faster)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 39.3ms -> 95.7μs (41008% faster)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 47.7ms -> 143μs (33136% faster)

def test_sorter_large_identical():
    # Large list with all identical elements
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.2ms -> 54.9μs (51256% faster)

# --- ADDITIONAL EDGE CASES ---

def test_sorter_edge_minimal_input():
    # List with zero or one element (already tested above, but for completeness)
    codeflash_output = sorter([]) # 7.62μs -> 4.38μs (74.3% faster)
    codeflash_output = sorter([1]) # 5.67μs -> 4.12μs (37.4% faster)

def test_sorter_edge_mutation():
    # Ensure the function mutates the original list (in-place sort)
    arr = [2, 1]
    sorter(arr) # 7.58μs -> 4.42μs (71.7% faster)

def test_sorter_edge_stability():
    # Test stability: elements with equal value retain their original order
    class Item:
        def __init__(self, value, tag):
            self.value = value
            self.tag = tag
        def __lt__(self, other):
            return self.value < other.value
        def __eq__(self, other):
            return self.value == other.value and self.tag == other.tag
        def __repr__(self):
            return f"Item({self.value}, '{self.tag}')"
    a = Item(1, 'a')
    b = Item(1, 'b')
    c = Item(2, 'c')
    arr = [c, a, b]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.6μs -> 6.25μs (69.3% faster)

def test_sorter_edge_large_negative_numbers():
    # List with only negative numbers, large scale
    arr = [random.randint(-10000, -1) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 40.8ms -> 121μs (33596% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mgvgz5jb and push.

Codeflash

The optimized code replaces a manual bubble sort implementation with Python's built-in `arr.sort()` method, delivering a massive **167,305% speedup**.

**Key optimization:**
- **Algorithm change**: Bubble sort has O(n²) time complexity, requiring nested loops that make ~73 million comparisons and ~45 million swaps for 1000-element arrays
- **Built-in sort**: Python's `arr.sort()` uses Timsort, an optimized hybrid algorithm with O(n log n) average complexity that's implemented in C

**Why this is dramatically faster:**
- **Reduced operations**: The line profiler shows the original code spent 29.8 seconds in nested loops, while the optimized version completes in 0.005 seconds
- **Native implementation**: `arr.sort()` runs at C speed rather than interpreted Python bytecode
- **Algorithmic efficiency**: Timsort is particularly fast on already-sorted or reverse-sorted data, explaining the exceptional speedups (47,835% - 76,959%) on large ordered arrays

**Test case performance patterns:**
- **Small arrays** (5-10 elements): 28-109% speedup - overhead reduction is main benefit
- **Large arrays** (1000 elements): 33,000-76,000% speedup - algorithmic improvement dominates
- **Best cases**: Already sorted or reverse sorted large arrays show maximum gains due to Timsort's adaptive nature

The optimization maintains identical behavior including in-place sorting, return values, and print statements.
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 October 17, 2025 23:18
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Oct 17, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mgvgz5jb branch October 17, 2025 23:18
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant