Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Mar 28, 2025

📄 48,968% (489.68x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 325 milliseconds 663 microseconds (best of 422 runs)

📝 Explanation and details

Certainly! The current implementation of the sorting function uses Bubble Sort, which has a time complexity of (O(n^2)). We can significantly improve the performance by using a more efficient sorting algorithm like Timsort (which is used in Python's built-in sort method) with a time complexity of (O(n \log n)).

Here's an optimized version.

This revised version will run significantly faster for larger lists due to the optimized nature of Timsort.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 66 Passed
⏪ Replay Tests 9 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Basic Functionality
def test_simple_unsorted_list():
    codeflash_output = sorter([3, 1, 2])
    codeflash_output = sorter([5, 4, 3, 2, 1])

def test_already_sorted_list():
    codeflash_output = sorter([1, 2, 3])
    codeflash_output = sorter([1, 2, 3, 4, 5])

def test_reverse_sorted_list():
    codeflash_output = sorter([3, 2, 1])
    codeflash_output = sorter([5, 4, 3, 2, 1])

# Edge Cases
def test_empty_list():
    codeflash_output = sorter([])

def test_single_element_list():
    codeflash_output = sorter([1])

def test_two_element_list():
    codeflash_output = sorter([2, 1])
    codeflash_output = sorter([1, 2])

# Lists with Duplicates
def test_all_elements_same():
    codeflash_output = sorter([1, 1, 1])

def test_some_duplicates():
    codeflash_output = sorter([3, 1, 2, 1])
    codeflash_output = sorter([4, 5, 4, 3, 2, 1, 2])

# Lists with Negative Numbers
def test_mixed_positive_and_negative():
    codeflash_output = sorter([3, -1, 2, -5])
    codeflash_output = sorter([-3, -2, -1, 0, 1, 2, 3])

def test_all_negative():
    codeflash_output = sorter([-3, -1, -2])

# Lists with Floating Point Numbers
def test_mixed_integers_and_floats():
    codeflash_output = sorter([3.1, 2.4, 1.5])
    codeflash_output = sorter([1, 2.5, 3, 0.5])

def test_all_floats():
    codeflash_output = sorter([3.1, 2.4, 1.5])

# Large Lists
def test_large_random_list():
    import random
    random_list = [random.randint(0, 1000) for _ in range(1000)]
    codeflash_output = sorter(random_list)

def test_large_sorted_list():
    large_sorted_list = [i for i in range(1000)]
    codeflash_output = sorter(large_sorted_list)

def test_large_reverse_sorted_list():
    large_reverse_sorted_list = [i for i in range(1000, 0, -1)]
    codeflash_output = sorter(large_reverse_sorted_list)

# Lists with Different Data Types (Should Raise an Error)
def test_mixed_data_types():
    with pytest.raises(TypeError):
        sorter([1, 'a', 3])
    with pytest.raises(TypeError):
        sorter([2.5, 'b', 3])

# Large Scale Test Cases
def test_very_large_random_list():
    import random
    very_large_random_list = [random.randint(0, 1000000) for _ in range(1000)]
    codeflash_output = sorter(very_large_random_list)

def test_very_large_sorted_list():
    very_large_sorted_list = [i for i in range(1000)]
    codeflash_output = sorter(very_large_sorted_list)

def test_very_large_reverse_sorted_list():
    very_large_reverse_sorted_list = [i for i in range(1000000, 999000, -1)]
    codeflash_output = sorter(very_large_reverse_sorted_list)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Basic Test Cases

def test_empty_list():
    codeflash_output = sorter([])

def test_single_element_list():
    codeflash_output = sorter([1])

def test_already_sorted_list():
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([-3, -2, -1, 0, 1])

def test_reverse_sorted_list():
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([3, 2, 1, 0, -1])

def test_list_with_duplicates():
    codeflash_output = sorter([4, 2, 2, 4, 3])
    codeflash_output = sorter([1, 1, 1, 1])

def test_list_with_negative_numbers():
    codeflash_output = sorter([3, -1, -4, 2, 0])
    codeflash_output = sorter([-5, -9, -3, -4])

def test_list_with_mixed_positive_and_negative_numbers():
    codeflash_output = sorter([3, -1, 0, 2, -2])
    codeflash_output = sorter([0, -1, 1, -2, 2])

def test_list_with_floating_point_numbers():
    codeflash_output = sorter([3.1, 2.4, 5.5, 1.2])
    codeflash_output = sorter([0.1, -0.1, 0.0, 2.2])

# Edge Test Cases

def test_list_with_special_floating_point_values():
    codeflash_output = sorter([float('inf'), 1.0, float('-inf')])
    codeflash_output = sorter([float('nan'), 1.0, 2.0]); result = codeflash_output

def test_list_with_boolean_values():
    codeflash_output = sorter([True, False, True])
    codeflash_output = sorter([False, True, False])

def test_list_with_none_values():
    with pytest.raises(TypeError):
        sorter([None, 1, 2])
    codeflash_output = sorter([None, None, None])

def test_list_with_identical_elements():
    codeflash_output = sorter([2, 2, 2, 2, 2])
    codeflash_output = sorter([0, 0, 0, 0])

def test_list_with_large_integers_and_small_floats():
    codeflash_output = sorter([10**10, 1.1, 10**5, 0.1])
    codeflash_output = sorter([1.1, 10**10, 0.1, 10**5])


def test_list_with_mixed_numeric_types():
    codeflash_output = sorter([1, 2.0, 3])
    codeflash_output = sorter([2.0, 1, 3.0])

def test_list_with_special_characters():
    codeflash_output = sorter(['a', '!', 'b', '@'])
    codeflash_output = sorter(['#', ', '%', '&'])

def test_list_with_unicode_characters():
    codeflash_output = sorter(['é', 'è', 'ê', 'ë'])
    codeflash_output = sorter(['ü', 'û', 'ù', 'ú'])

def test_list_with_very_large_and_very_small_numbers():
    codeflash_output = sorter([10**308, 10**-308, 10**154, 10**-154])
    codeflash_output = sorter([10**-308, 10**308, 10**-154, 10**154])

def test_list_with_repeated_patterns_and_noise():
    codeflash_output = sorter([1, 2, 1, 2, 1, 2, 0, 3, 4])
    codeflash_output = sorter([3, 3, 2, 2, 1, 1, 4, 0, 5])

def test_list_with_elements_of_different_lengths():
    codeflash_output = sorter(['short', 'longer', 'longest'])
    codeflash_output = sorter(['a', 'abc', 'ab'])

# Large Scale Test Cases

def test_large_list():
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_very_large_list():
    very_large_list = list(range(10000, 9000, -1))
    sorted_very_large_list = list(range(1, 1001))
    codeflash_output = sorter(very_large_list)

def test_performance_large_scale_data():
    import random
    large_scale_list = random.sample(range(1000), 1000)
    codeflash_output = sorter(large_scale_list)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m8tf6m19 and push.

Codeflash

Certainly! The current implementation of the sorting function uses Bubble Sort, which has a time complexity of \(O(n^2)\). We can significantly improve the performance by using a more efficient sorting algorithm like Timsort (which is used in Python's built-in `sort` method) with a time complexity of \(O(n \log n)\).

Here's an optimized version.



This revised version will run significantly faster for larger lists due to the optimized nature of Timsort.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 28, 2025
@codeflash-ai codeflash-ai bot requested a review from alvin-r March 28, 2025 23:34
@alvin-r alvin-r closed this Mar 28, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-m8tf6m19 branch March 28, 2025 23:35
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants