Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented May 15, 2025

📄 13,663% (136.63x) speedup for find_last_node in src/dsa/nodes.py

⏱️ Runtime : 157 milliseconds 1.14 millisecond (best of 412 runs)

📝 Explanation and details

Here is a faster version of the given function.
Optimization:

  • Instead of checking for each node if any edge has it as a source (O(N * E)), we first collect all the used sources in a set (O(E)), then check each node's id against this set (O(N)).
  • This reduces the typical time complexity from O(N * E) to O(E + N).

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 43 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from src.dsa.nodes import find_last_node

# unit tests

# -------------------------------
# Basic Test Cases
# -------------------------------

def test_single_node_no_edges():
    # One node, no edges; node should be returned as last node
    nodes = [{"id": "A"}]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_two_nodes_one_edge():
    # Two nodes, one edge from A to B; B should be last node
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_three_nodes_linear_chain():
    # Three nodes, linear chain A->B->C; C should be last node
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [{"source": "A", "target": "B"}, {"source": "B", "target": "C"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_multiple_last_nodes_returns_first():
    # Two nodes, no edges; both are last nodes, should return first in list
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_branching_graph():
    # A->B, A->C; both B and C are last nodes, should return first in list
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [{"source": "A", "target": "B"}, {"source": "A", "target": "C"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

# -------------------------------
# Edge Test Cases
# -------------------------------

def test_empty_nodes_and_edges():
    # No nodes, no edges; should return None
    nodes = []
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_edges_but_no_nodes():
    # Edges exist but nodes list is empty; should return None
    nodes = []
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_edges_with_unknown_nodes():
    # Edges refer to nodes not in the nodes list; should return None
    nodes = []
    edges = [{"source": "X", "target": "Y"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_self_loop():
    # Node with a self-loop; node should not be considered last
    nodes = [{"id": "A"}]
    edges = [{"source": "A", "target": "A"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_circular_graph():
    # A->B, B->C, C->A; no last node exists
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [{"source": "A", "target": "B"}, {"source": "B", "target": "C"}, {"source": "C", "target": "A"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_multiple_edges_to_last_node():
    # A->C, B->C; C is last node
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [{"source": "A", "target": "C"}, {"source": "B", "target": "C"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_node_with_no_incoming_or_outgoing_edges():
    # Node D is isolated, should be returned as last node (first in list)
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}, {"id": "D"}]
    edges = [{"source": "A", "target": "B"}, {"source": "B", "target": "C"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_duplicate_node_ids():
    # Duplicated node ids; function should return the first occurrence
    nodes = [{"id": "A"}, {"id": "A"}]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_edge_with_nonexistent_source():
    # Edge with source not in nodes; should not affect result
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "Z", "target": "A"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output
    
def test_edge_with_nonexistent_target():
    # Edge with target not in nodes; should not affect result
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "Z"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_nodes_with_additional_fields():
    # Nodes have extra fields; function should ignore them
    nodes = [{"id": "A", "value": 1}, {"id": "B", "value": 2}]
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

# -------------------------------
# Large Scale Test Cases
# -------------------------------

def test_large_linear_chain():
    # 1000 nodes in a linear chain; last node should be last in list
    N = 1000
    nodes = [{"id": str(i)} for i in range(N)]
    edges = [{"source": str(i), "target": str(i+1)} for i in range(N-1)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_branching_graph():
    # 500 nodes, each with an edge to a unique last node (500 more nodes)
    N = 500
    nodes = [{"id": f"A{i}"} for i in range(N)] + [{"id": f"B{i}"} for i in range(N)]
    edges = [{"source": f"A{i}", "target": f"B{i}"} for i in range(N)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_graph_with_isolated_node():
    # 999 nodes in a chain, 1 isolated node at start
    N = 1000
    nodes = [{"id": "X"}] + [{"id": str(i)} for i in range(N-1)]
    edges = [{"source": str(i), "target": str(i+1)} for i in range(1, N-2)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_graph_all_connected():
    # 1000 nodes, each with outgoing edge to next (cycle); no last node
    N = 1000
    nodes = [{"id": str(i)} for i in range(N)]
    edges = [{"source": str(i), "target": str((i+1)%N)} for i in range(N)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_graph_multiple_last_nodes():
    # 500 nodes, each with no outgoing edges (no edges at all)
    N = 500
    nodes = [{"id": str(i)} for i in range(N)]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

# -------------------------------
# Mutation Testing Guards
# -------------------------------

def test_mutation_guard_returns_none_if_no_last_node():
    # If all nodes have outgoing edges, must return None
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "B"}, {"source": "B", "target": "A"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_mutation_guard_returns_first_last_node():
    # If multiple last nodes, must return first in list
    nodes = [{"id": "X"}, {"id": "Y"}, {"id": "Z"}]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from src.dsa.nodes import find_last_node

# unit tests

# -------------------------
# Basic Test Cases
# -------------------------

def test_single_node_no_edges():
    # One node, no edges: should return the node itself
    nodes = [{"id": "A"}]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_two_nodes_one_edge():
    # Two nodes, one edge from A to B: should return B (no outgoing edges)
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_three_nodes_linear_chain():
    # A -> B -> C, should return C
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [{"source": "A", "target": "B"}, {"source": "B", "target": "C"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_multiple_terminal_nodes():
    # A -> B, C is isolated, D is isolated: should return first found last node (C or D)
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}, {"id": "D"}]
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output
    # Actually, B, C, D all have no outgoing edges. But since nodes are checked in order,
    # the first one found is B (since A has outgoing edge, B doesn't, C doesn't, D doesn't).
    # So the function will return B.

def test_disconnected_nodes():
    # No edges, multiple nodes: should return first node in list
    nodes = [{"id": "X"}, {"id": "Y"}, {"id": "Z"}]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

# -------------------------
# Edge Test Cases
# -------------------------

def test_empty_nodes_and_edges():
    # No nodes, no edges: should return None
    nodes = []
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_edges_but_no_nodes():
    # Edges present, but no nodes: should return None
    nodes = []
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_cycle_graph():
    # A -> B -> C -> A (cycle): all nodes have outgoing edges, should return None
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [
        {"source": "A", "target": "B"},
        {"source": "B", "target": "C"},
        {"source": "C", "target": "A"}
    ]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_self_loop_node():
    # Node with a self-loop should not be considered last node
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "A"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_multiple_edges_from_one_node():
    # A -> B, A -> C, B -> D; D should be last node
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}, {"id": "D"}]
    edges = [
        {"source": "A", "target": "B"},
        {"source": "A", "target": "C"},
        {"source": "B", "target": "D"}
    ]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_node_with_incoming_but_no_outgoing_edges():
    # A -> B, C -> B; B has only incoming, should be returned
    nodes = [{"id": "A"}, {"id": "B"}, {"id": "C"}]
    edges = [
        {"source": "A", "target": "B"},
        {"source": "C", "target": "B"}
    ]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_edges_with_nonexistent_nodes():
    # Edges refer to nodes not in nodes list; should ignore those edges for missing nodes
    nodes = [{"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "X"}, {"source": "Y", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_duplicate_node_ids():
    # Duplicate node IDs: should return first node with no outgoing edges
    nodes = [{"id": "A"}, {"id": "A"}, {"id": "B"}]
    edges = [{"source": "A", "target": "B"}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_node_with_non_string_id():
    # Node IDs are not strings
    nodes = [{"id": 1}, {"id": 2}]
    edges = [{"source": 1, "target": 2}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_edge_case_large_ids():
    # Node IDs are large numbers
    nodes = [{"id": 9999999}, {"id": 8888888}]
    edges = [{"source": 9999999, "target": 8888888}]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

# -------------------------
# Large Scale Test Cases
# -------------------------

def test_large_linear_chain():
    # 1000 nodes in a chain: 0->1->2->...->999, should return node 999
    nodes = [{"id": str(i)} for i in range(1000)]
    edges = [{"source": str(i), "target": str(i+1)} for i in range(999)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_star_graph():
    # Node 0 points to all others, all others have no outgoing edges
    nodes = [{"id": str(i)} for i in range(1000)]
    edges = [{"source": "0", "target": str(i)} for i in range(1, 1000)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_fully_connected_graph():
    # Every node points to every other node (no last node)
    nodes = [{"id": str(i)} for i in range(100)]
    edges = []
    for i in range(100):
        for j in range(100):
            if i != j:
                edges.append({"source": str(i), "target": str(j)})
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_disconnected_nodes():
    # 1000 nodes, no edges: should return first node
    nodes = [{"id": str(i)} for i in range(1000)]
    edges = []
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output

def test_large_graph_multiple_last_nodes():
    # 1000 nodes, 500 edges from 0-499 to 500-999 (each i->i+500)
    nodes = [{"id": str(i)} for i in range(1000)]
    edges = [{"source": str(i), "target": str(i+500)} for i in range(500)]
    codeflash_output = find_last_node(nodes, edges); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-find_last_node-map37u02 and push.

Codeflash

Here is a faster version of the given function.  
Optimization:  
- Instead of checking for each node if any edge has it as a source (O(N * E)), we first collect all the used sources in a set (O(E)), then check each node's id against this set (O(N)).  
- This reduces the typical time complexity from O(N * E) to O(E + N).
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label May 15, 2025
@codeflash-ai codeflash-ai bot requested a review from KRRT7 May 15, 2025 08:08
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-find_last_node-map37u02 branch May 20, 2025 05:34
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant