Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 20 additions & 9 deletions src/statistics/similarity.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,17 +10,23 @@
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
# Convert both X and Y to float arrays using np.asarray for possible efficiency and memory savings
X = np.asarray(X, dtype=np.float64)
Y = np.asarray(Y, dtype=np.float64)
if X.shape[1] != Y.shape[1]:
raise ValueError(
f"Number of columns in X and Y must be the same. X has shape {X.shape} "
f"and Y has shape {Y.shape}."
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
# Use 'keepdims=True' to allow for later broadcasting, and avoid explicit outer product shape
X_norm = np.linalg.norm(X, axis=1, keepdims=True)
Y_norm = np.linalg.norm(Y, axis=1, keepdims=True)
# Compute denominator directly for efficiency
denom = X_norm @ Y_norm.T
# Handle division by zero in-place to avoid NaNs/Infs
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(X, Y.T) / denom
np.copyto(similarity, 0.0, where=~np.isfinite(similarity))
return similarity


Expand All @@ -33,11 +39,16 @@ def cosine_similarity_top_k(
if len(X) == 0 or len(Y) == 0:
return [], []
score_array = cosine_similarity(X, Y)
sorted_idxs = score_array.flatten().argsort()[::-1]
flat_scores = (
score_array.flatten()
) # Use flatten() to match original behavior exactly
sorted_idxs = flat_scores.argsort()[
::-1
] # Use full argsort to match original ordering
top_k = top_k or len(sorted_idxs)
top_idxs = sorted_idxs[:top_k]
score_threshold = score_threshold or -1.0
top_idxs = top_idxs[score_array.flatten()[top_idxs] > score_threshold]
top_idxs = top_idxs[flat_scores[top_idxs] > score_threshold]
ret_idxs = [(x // score_array.shape[1], x % score_array.shape[1]) for x in top_idxs]
scores = score_array.flatten()[top_idxs].tolist()
scores = flat_scores[top_idxs].tolist()
return ret_idxs, scores