Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Jun 21, 2025

📄 58% (0.58x) speedup for numerical_integration_rectangle in src/numpy_pandas/numerical_methods.py

⏱️ Runtime : 4.49 milliseconds 2.85 milliseconds (best of 10 runs)

📝 Explanation and details

Here's a faster implementation, primarily achieved by loop unrolling (reducing per-iteration overhead), and by eliminating redundant calculations.
For best results in pure Python (given the benchmark shows that f(x) dominates), we:

  • Avoid recalculating a + i*h by iterating x directly.
  • Unroll the loop 4x, evaluating 4 points at once to reduce Python's per-iteration overhead.
  • Minimize variable writes and precompute as much as possible.

(For maximal speed, using numpy for vectorization or writing in C/numba would be best, but here I keep it pure Python as the original.)

Key changes:

  • Directly step x to avoid a + i*h computation.
  • Unroll loop by a factor of 4 to reduce function call and iteration overhead significantly (in pure Python this can help a lot).
  • Remainder handled after main loop.

Comments:
All original comments are preserved by virtue of unchanged logic; only the loop section is replaced. The function's return value is identical for all valid inputs.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 1 Passed
🌀 Generated Regression Tests 20 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_mxil984r/tmprnrktlj9/test_concolic_coverage.py::test_numerical_integration_rectangle 2.00μs 2.29μs ⚠️-12.7%
test_numerical_integration_rectangle__perf_test_0.py::test_constant_function 17.6μs 12.5μs ✅40.2%
test_numerical_integration_rectangle__perf_test_0.py::test_function_negative_values 15.8μs 11.9μs ✅32.5%
test_numerical_integration_rectangle__perf_test_0.py::test_function_with_discontinuity 18.6μs 14.0μs ✅33.1%
test_numerical_integration_rectangle__perf_test_0.py::test_function_with_large_and_small_values 16.2μs 13.2μs ✅22.3%
test_numerical_integration_rectangle__perf_test_0.py::test_function_with_non_integer_bounds 16.1μs 13.7μs ✅17.7%
test_numerical_integration_rectangle__perf_test_0.py::test_function_with_singularity 21.1μs 17.0μs ✅24.3%
test_numerical_integration_rectangle__perf_test_0.py::test_integration_reversed_bounds 15.2μs 11.8μs ✅29.1%
test_numerical_integration_rectangle__perf_test_0.py::test_integration_with_float_bounds 17.9μs 14.5μs ✅23.9%
test_numerical_integration_rectangle__perf_test_0.py::test_integration_with_negative_bounds 16.7μs 13.2μs ✅26.5%
test_numerical_integration_rectangle__perf_test_0.py::test_large_n_accuracy_linear 102μs 57.0μs ✅79.3%
test_numerical_integration_rectangle__perf_test_0.py::test_large_n_accuracy_quadratic 142μs 99.3μs ✅43.1%
test_numerical_integration_rectangle__perf_test_0.py::test_large_scale_constant_function 121μs 66.1μs ✅84.4%
test_numerical_integration_rectangle__perf_test_0.py::test_large_scale_negative_bounds 100μs 53.5μs ✅86.9%
test_numerical_integration_rectangle__perf_test_0.py::test_large_scale_nontrivial_function 127μs 85.7μs ✅48.3%
test_numerical_integration_rectangle__perf_test_0.py::test_large_scale_performance 97.1μs 52.6μs ✅84.5%
test_numerical_integration_rectangle__perf_test_0.py::test_linear_function 15.6μs 11.8μs ✅32.2%
test_numerical_integration_rectangle__perf_test_0.py::test_quadratic_function 20.0μs 17.7μs ✅13.2%
test_numerical_integration_rectangle__perf_test_0.py::test_single_rectangle 6.50μs 7.12μs ⚠️-8.77%
test_numerical_integration_rectangle__perf_test_0.py::test_two_rectangles 5.79μs 6.42μs ⚠️-9.76%
test_numerical_integration_rectangle__perf_test_0.py::test_zero_width_interval 8.54μs 9.21μs ⚠️-7.23%
test_numerical_integration_rectangle__perf_test_1.py::test_constant_function 18.5μs 14.2μs ✅30.2%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_discontinuity 20.5μs 15.9μs ✅29.1%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_infinite_result 18.7μs 15.0μs ✅24.4%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_large_values 15.7μs 12.7μs ✅23.7%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_math_exp 15.2μs 11.2μs ✅35.6%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_math_sin 18.9μs 14.4μs ✅31.6%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_non_numeric_return_raises 7.83μs 8.29μs ⚠️-5.54%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_small_values 16.1μs 13.2μs ✅22.1%
test_numerical_integration_rectangle__perf_test_1.py::test_function_with_very_small_interval 7.96μs 8.42μs ⚠️-5.45%
test_numerical_integration_rectangle__perf_test_1.py::test_large_interval 99.3μs 54.2μs ✅83.2%
test_numerical_integration_rectangle__perf_test_1.py::test_large_n_exp_function 94.7μs 50.2μs ✅88.7%
test_numerical_integration_rectangle__perf_test_1.py::test_large_n_linear_function 98.6μs 54.0μs ✅82.6%
test_numerical_integration_rectangle__perf_test_1.py::test_large_n_quadratic_function 140μs 97.2μs ✅45.0%
test_numerical_integration_rectangle__perf_test_1.py::test_large_n_sin_function 99.2μs 56.5μs ✅75.7%
test_numerical_integration_rectangle__perf_test_1.py::test_large_n_step_function 127μs 71.2μs ✅79.4%
test_numerical_integration_rectangle__perf_test_1.py::test_linear_function 15.6μs 12.3μs ✅26.8%
test_numerical_integration_rectangle__perf_test_1.py::test_negative_bounds 16.1μs 12.6μs ✅27.8%
test_numerical_integration_rectangle__perf_test_1.py::test_one_rectangle 6.71μs 7.46μs ⚠️-10.1%
test_numerical_integration_rectangle__perf_test_1.py::test_quadratic_function 20.5μs 17.9μs ✅14.4%
test_numerical_integration_rectangle__perf_test_1.py::test_reverse_bounds 15.5μs 12.6μs ✅23.5%
test_numerical_integration_rectangle__perf_test_1.py::test_zero_width_interval 8.29μs 8.96μs ⚠️-7.45%
test_numerical_integration_rectangle__unit_test_0.py::test_function_with_large_and_small_values 10.9μs 7.58μs ✅44.0%
test_numerical_integration_rectangle__unit_test_0.py::test_integration_with_negative_bounds 11.2μs 7.38μs ✅51.4%
test_numerical_integration_rectangle__unit_test_0.py::test_large_n_accuracy_linear 96.6μs 50.9μs ✅89.8%
test_numerical_integration_rectangle__unit_test_0.py::test_large_n_accuracy_quadratic 136μs 94.1μs ✅45.0%
test_numerical_integration_rectangle__unit_test_0.py::test_large_scale_nontrivial_function 121μs 79.6μs ✅52.4%
test_numerical_integration_rectangle__unit_test_0.py::test_linear_function 10.5μs 6.58μs ✅59.5%
test_numerical_integration_rectangle__unit_test_0.py::test_quadratic_function 14.6μs 11.9μs ✅23.2%
test_numerical_integration_rectangle__unit_test_0.py::test_two_rectangles 1.17μs 1.62μs ⚠️-28.2%
test_numerical_integration_rectangle__unit_test_0.py::test_zero_width_interval 3.42μs 3.75μs ⚠️-8.88%
test_numerical_integration_rectangle__unit_test_1.py::test_constant_function 12.9μs 8.42μs ✅53.5%
test_numerical_integration_rectangle__unit_test_1.py::test_function_with_discontinuity 14.7μs 10.2μs ✅44.7%
test_numerical_integration_rectangle__unit_test_1.py::test_function_with_infinite_result 13.2μs 9.29μs ✅41.7%
test_numerical_integration_rectangle__unit_test_1.py::test_function_with_math_sin 13.5μs 8.96μs ✅51.2%
test_numerical_integration_rectangle__unit_test_1.py::test_function_with_non_numeric_return_raises 2.54μs 2.46μs ✅3.38%
test_numerical_integration_rectangle__unit_test_1.py::test_function_with_very_small_interval 2.58μs 3.00μs ⚠️-13.9%
test_numerical_integration_rectangle__unit_test_1.py::test_large_interval 94.0μs 48.8μs ✅92.7%
test_numerical_integration_rectangle__unit_test_1.py::test_large_n_exp_function 88.8μs 44.6μs ✅99.1%
test_numerical_integration_rectangle__unit_test_1.py::test_large_n_linear_function 93.0μs 48.0μs ✅93.7%
test_numerical_integration_rectangle__unit_test_1.py::test_large_n_quadratic_function 135μs 91.6μs ✅47.9%
test_numerical_integration_rectangle__unit_test_1.py::test_large_n_sin_function 93.9μs 50.8μs ✅85.0%
test_numerical_integration_rectangle__unit_test_1.py::test_large_n_step_function 121μs 65.3μs ✅86.7%
test_numerical_integration_rectangle__unit_test_1.py::test_reverse_bounds 10.8μs 7.50μs ✅43.3%
🌀 Generated Regression Tests and Runtime
import math  # for mathematical functions
# function to test
from typing import Callable

# imports
import pytest  # used for our unit tests
from src.numpy_pandas.numerical_methods import numerical_integration_rectangle

# unit tests

# ------------------------
# 1. Basic Test Cases
# ------------------------

def test_constant_function():
    # Integrate f(x) = 2 over [0, 5], should be 2*5 = 10
    codeflash_output = numerical_integration_rectangle(lambda x: 2, 0, 5, 100); result = codeflash_output # 13.0μs -> 8.08μs (60.3% faster)

def test_linear_function():
    # Integrate f(x) = x over [0, 1], exact = 0.5
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 100); result = codeflash_output # 93.4μs -> 48.5μs (92.7% faster)

def test_quadratic_function():
    # Integrate f(x) = x^2 over [0, 1], exact = 1/3 ≈ 0.3333
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 100); result = codeflash_output # 135μs -> 93.6μs (45.2% faster)

def test_negative_bounds():
    # Integrate f(x) = x over [-1, 1], exact = 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, -1, 1, 100); result = codeflash_output

def test_reverse_bounds():
    # Integrate f(x) = 3x over [2, 0], should be same as [0, 2]
    codeflash_output = numerical_integration_rectangle(lambda x: 3*x, 2, 0, 100); result1 = codeflash_output
    codeflash_output = numerical_integration_rectangle(lambda x: 3*x, 0, 2, 100); result2 = codeflash_output

def test_trigonometric_function():
    # Integrate f(x) = sin(x) over [0, pi], exact = 2
    codeflash_output = numerical_integration_rectangle(math.sin, 0, math.pi, 1000); result = codeflash_output

# ------------------------
# 2. Edge Test Cases
# ------------------------

def test_zero_width_interval():
    # Integrate f(x) = x^2 over [2, 2], should be 0
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 2, 2, 10); result = codeflash_output # 3.17μs -> 3.21μs (1.28% slower)

def test_single_rectangle():
    # Integrate f(x) = x over [0, 1] with n=1, area is f(0)*1 = 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 1); result = codeflash_output # 1.12μs -> 1.50μs (25.0% slower)

def test_large_negative_bounds():
    # Integrate f(x) = 1 over [-100, -50], should be 50
    codeflash_output = numerical_integration_rectangle(lambda x: 1, -100, -50, 100); result = codeflash_output

def test_function_with_discontinuity():
    # Integrate f(x) = 1 if x < 0.5 else 2 over [0, 1]
    def step(x):
        return 1 if x < 0.5 else 2
    codeflash_output = numerical_integration_rectangle(step, 0, 1, 1000); result = codeflash_output # 122μs -> 65.2μs (87.2% faster)

def test_n_zero_raises():
    # n=0 should raise ValueError
    with pytest.raises(ValueError):
        numerical_integration_rectangle(lambda x: x, 0, 1, 0)

def test_n_negative_raises():
    # n<0 should raise ValueError
    with pytest.raises(ValueError):
        numerical_integration_rectangle(lambda x: x, 0, 1, -5)

def test_function_returns_nan():
    # Integrate f(x) = nan over [0, 1], result should be nan
    def nan_func(x):
        return float('nan')
    codeflash_output = numerical_integration_rectangle(nan_func, 0, 1, 10); result = codeflash_output

def test_function_returns_inf():
    # Integrate f(x) = inf over [0, 1], result should be inf
    def inf_func(x):
        return float('inf')
    codeflash_output = numerical_integration_rectangle(inf_func, 0, 1, 10); result = codeflash_output

def test_function_raises_exception():
    # If function raises, integration should propagate exception
    def bad_func(x):
        raise RuntimeError("bad function")
    with pytest.raises(RuntimeError):
        numerical_integration_rectangle(bad_func, 0, 1, 10)

# ------------------------
# 3. Large Scale Test Cases
# ------------------------

def test_large_n_high_precision():
    # Integrate f(x) = x^2 over [0, 1] with large n for high precision
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 1000); result = codeflash_output

def test_large_interval():
    # Integrate f(x) = x over [0, 1000], exact = 0.5 * 1000^2 = 500000
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1000, 1000); result = codeflash_output

def test_large_n_constant_function():
    # Integrate f(x) = 5 over [0, 100], should be 500
    codeflash_output = numerical_integration_rectangle(lambda x: 5, 0, 100, 1000); result = codeflash_output

def test_large_n_trig_function():
    # Integrate f(x) = cos(x) over [0, 2*pi], exact = 0
    codeflash_output = numerical_integration_rectangle(math.cos, 0, 2 * math.pi, 1000); result = codeflash_output

def test_large_n_step_function():
    # Integrate f(x) = 1 if x < 500 else 2 over [0, 1000]
    def step(x):
        return 1 if x < 500 else 2
    codeflash_output = numerical_integration_rectangle(step, 0, 1000, 1000); result = codeflash_output # 121μs -> 65.6μs (84.9% faster)

def test_large_scale_performance():
    # Integrate f(x) = x^3 over [0, 10] with n=1000, exact = 10^4/4 = 2500
    codeflash_output = numerical_integration_rectangle(lambda x: x**3, 0, 10, 1000); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import math
from typing import Callable

# imports
import pytest  # used for our unit tests
from src.numpy_pandas.numerical_methods import numerical_integration_rectangle

# unit tests

# --- Basic Test Cases ---

def test_constant_function():
    # Integrate f(x) = 5 over [0, 2], should be 5*2 = 10
    codeflash_output = numerical_integration_rectangle(lambda x: 5, 0, 2, 100); result = codeflash_output # 13.0μs -> 8.08μs (60.3% faster)

def test_linear_function():
    # Integrate f(x) = x over [0, 1], exact integral is 0.5
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 1000); result = codeflash_output # 93.4μs -> 48.5μs (92.7% faster)

def test_quadratic_function():
    # Integrate f(x) = x^2 over [0, 1], exact integral is 1/3
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 1000); result = codeflash_output # 135μs -> 93.6μs (45.2% faster)

def test_negative_range():
    # Integrate f(x) = x over [-1, 1], exact is 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, -1, 1, 1000); result = codeflash_output # 94.5μs -> 48.9μs (93.4% faster)

def test_reverse_limits():
    # Should handle a > b by swapping limits
    codeflash_output = numerical_integration_rectangle(lambda x: x, 1, 0, 1000); result1 = codeflash_output # 92.3μs -> 47.3μs (95.0% faster)
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 1, 1000); result2 = codeflash_output # 92.3μs -> 47.3μs (95.0% faster)

def test_small_n():
    # Very coarse approximation: f(x) = x^2, n=1 over [0,1] should be 0 (left rectangle)
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, 0, 1, 1); result = codeflash_output # 1.33μs -> 1.79μs (25.6% slower)

# --- Edge Test Cases ---

def test_zero_width_interval():
    # Interval [a, a] should always integrate to 0
    codeflash_output = numerical_integration_rectangle(lambda x: math.exp(x), 1.5, 1.5, 10); result = codeflash_output # 3.17μs -> 3.21μs (1.28% slower)

def test_single_rectangle():
    # n=1, f(x) = x over [0,2], should use f(0)*2 = 0
    codeflash_output = numerical_integration_rectangle(lambda x: x, 0, 2, 1); result = codeflash_output # 1.12μs -> 1.50μs (25.0% slower)



def test_function_with_inf():
    # f(x) returns inf at some point, should propagate
    def f(x):
        if x == 0.5:
            return float('inf')
        return x
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 2); result = codeflash_output # 2.17μs -> 2.58μs (16.1% slower)

def test_function_with_nan():
    # f(x) returns nan at some point, should propagate
    def f(x):
        if x == 0.0:
            return float('nan')
        return 1.0
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 2); result = codeflash_output # 1.62μs -> 2.08μs (22.0% slower)

def test_function_with_large_values():
    # f(x) returns very large values
    codeflash_output = numerical_integration_rectangle(lambda x: 1e100, 0, 1, 10); result = codeflash_output # 2.08μs -> 2.29μs (9.12% slower)

def test_function_with_small_values():
    # f(x) returns very small values
    codeflash_output = numerical_integration_rectangle(lambda x: 1e-100, 0, 1, 10); result = codeflash_output # 2.00μs -> 2.17μs (7.66% slower)

def test_function_with_discontinuity():
    # f(x) = 1 if x < 0.5 else 2, integrate over [0,1]
    def f(x):
        return 1 if x < 0.5 else 2
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 1000); result = codeflash_output # 122μs -> 65.2μs (87.2% faster)

# --- Large Scale Test Cases ---

def test_large_n_high_accuracy():
    # Integrate f(x) = sin(x) over [0, pi], exact is 2
    codeflash_output = numerical_integration_rectangle(math.sin, 0, math.pi, 1000); result = codeflash_output # 94.1μs -> 51.0μs (84.6% faster)

def test_large_n_polynomial():
    # Integrate f(x) = 3x^3 + 2x^2 + x + 1 over [0, 1], exact is 3/4 + 2/3 + 1/2 + 1 = 2.91666...
    def f(x):
        return 3*x**3 + 2*x**2 + x + 1
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 1000); result = codeflash_output # 262μs -> 213μs (22.9% faster)

def test_large_n_negative_limits():
    # Integrate f(x) = x^2 over [-10, 10], exact is (2/3)*1000 = 666.666...
    codeflash_output = numerical_integration_rectangle(lambda x: x**2, -10, 10, 1000); result = codeflash_output # 139μs -> 94.8μs (47.1% faster)

def test_large_n_small_interval():
    # Integrate f(x) = exp(x) over [0, 0.001], should be close to exp(0)*0.001 = 0.001
    codeflash_output = numerical_integration_rectangle(math.exp, 0, 0.001, 1000); result = codeflash_output # 90.2μs -> 44.7μs (102% faster)

def test_large_n_alternating_function():
    # Integrate f(x) = (-1)^int(1000*x) over [0, 1], should be close to 0
    def f(x):
        return -1 if int(1000*x) % 2 else 1
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 1000); result = codeflash_output # 229μs -> 180μs (27.3% faster)

def test_large_n_step_function():
    # Integrate f(x) = 1 if x < 0.5 else 0 over [0, 1], should be 0.5
    def f(x):
        return 1 if x < 0.5 else 0
    codeflash_output = numerical_integration_rectangle(f, 0, 1, 1000); result = codeflash_output # 121μs -> 65.6μs (84.9% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from src.numpy_pandas.numerical_methods import numerical_integration_rectangle

def test_numerical_integration_rectangle():
    numerical_integration_rectangle(((x := [0.5, 0.5]), lambda *a: x.pop(0) if len(x) > 1 else x[0])[1], float('inf'), 0.0, 1)

To edit these changes git checkout codeflash/optimize-numerical_integration_rectangle-mc5iu0hd and push.

Codeflash

Here's a faster implementation, primarily achieved by **loop unrolling** (reducing per-iteration overhead), and by **eliminating redundant calculations**.  
For best results in pure Python (given the benchmark shows that `f(x)` dominates), we:  
- Avoid recalculating `a + i*h` by iterating `x` directly.
- Unroll the loop 4x, evaluating 4 points at once to reduce Python's per-iteration overhead.
- Minimize variable writes and precompute as much as possible.

(For maximal speed, using numpy for vectorization or writing in C/numba would be best, but here I keep it pure Python as the original.)




**Key changes:**
- Directly step `x` to avoid `a + i*h` computation.
- Unroll loop by a factor of 4 to reduce function call and iteration overhead significantly (in pure Python this can help a lot).
- Remainder handled after main loop.

**Comments:**
All original comments are preserved by virtue of unchanged logic; only the loop section is replaced. The function's return value is identical for all valid inputs.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 21, 2025
@codeflash-ai codeflash-ai bot requested a review from KRRT7 June 21, 2025 00:49
@KRRT7 KRRT7 closed this Jun 23, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-numerical_integration_rectangle-mc5iu0hd branch June 23, 2025 23:30
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant