Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Apr 20, 2025

📄 485% (4.85x) speedup for drop_duplicates in src/numpy_pandas/dataframe_operations.py

⏱️ Runtime : 34.2 milliseconds 5.85 milliseconds (best of 62 runs)

📝 Explanation and details

To improve the performance of this code, we can leverage the built-in drop_duplicates method provided by pandas, which is optimized for such operations. Using this built-in method is both faster and more concise. Here is the optimized version of the function.

This optimized version leverages the efficient internal implementation of drop_duplicates provided by pandas, significantly improving the runtime.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 40 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
from typing import List

import pandas as pd
# imports
import pytest  # used for our unit tests
from src.numpy_pandas.dataframe_operations import drop_duplicates

# unit tests

def test_single_column_with_duplicates():
    # DataFrame with a single column containing duplicate values
    df = pd.DataFrame({'A': [1, 1, 2, 3, 3]})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({'A': [1, 2, 3]})
    pd.testing.assert_frame_equal(result, expected)

def test_single_column_all_unique():
    # DataFrame with a single column containing all unique values
    df = pd.DataFrame({'A': [1, 2, 3, 4, 5]})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_multiple_columns_with_duplicates():
    # DataFrame with multiple columns where some rows are duplicates
    df = pd.DataFrame({'A': [1, 2, 2, 3], 'B': ['x', 'y', 'y', 'z']})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({'A': [1, 2, 3], 'B': ['x', 'y', 'z']})
    pd.testing.assert_frame_equal(result, expected)

def test_multiple_columns_all_unique():
    # DataFrame with multiple columns where all rows are unique
    df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': ['w', 'x', 'y', 'z']})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_empty_dataframe():
    # DataFrame with no rows and no columns
    df = pd.DataFrame()
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_empty_dataframe_with_columns():
    # DataFrame with columns but no rows
    df = pd.DataFrame(columns=['A', 'B'])
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_single_row_dataframe():
    # DataFrame with a single row and single column
    df = pd.DataFrame({'A': [1]})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_single_row_multiple_columns():
    # DataFrame with a single row and multiple columns
    df = pd.DataFrame({'A': [1], 'B': ['x']})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_single_column_multiple_rows():
    # DataFrame with a single column and multiple rows, some of which are duplicates
    df = pd.DataFrame({'A': [1, 2, 2, 3]})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({'A': [1, 2, 3]})
    pd.testing.assert_frame_equal(result, expected)

def test_subset_specified():
    # DataFrame with multiple columns, specifying a subset that contains duplicates
    df = pd.DataFrame({'A': [1, 2, 2, 3], 'B': ['x', 'y', 'y', 'z']})
    codeflash_output = drop_duplicates(df, subset=['A']); result = codeflash_output
    expected = pd.DataFrame({'A': [1, 2, 3], 'B': ['x', 'y', 'z']})
    pd.testing.assert_frame_equal(result, expected)

def test_subset_all_unique():
    # DataFrame with multiple columns, specifying a subset that contains all unique values
    df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': ['w', 'x', 'y', 'z']})
    codeflash_output = drop_duplicates(df, subset=['A']); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_different_data_types():
    # DataFrame with columns of different data types (e.g., integers, floats, strings, dates)
    df = pd.DataFrame({
        'A': [1, 2, 2, 3],
        'B': [1.1, 2.2, 2.2, 3.3],
        'C': ['x', 'y', 'y', 'z'],
        'D': [pd.NaT, pd.Timestamp('20200101'), pd.Timestamp('20200101'), pd.Timestamp('20200201')]
    })
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({
        'A': [1, 2, 3],
        'B': [1.1, 2.2, 3.3],
        'C': ['x', 'y', 'z'],
        'D': [pd.NaT, pd.Timestamp('20200101'), pd.Timestamp('20200201')]
    }).reset_index(drop=True)
    pd.testing.assert_frame_equal(result, expected)

def test_large_dataframe():
    # DataFrame with a large number of rows and columns to test performance and scalability
    df = pd.DataFrame({'A': range(1000), 'B': range(1000)})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

def test_large_dataframe_single_column():
    # DataFrame with a large number of rows and a single column to test performance with many duplicates
    df = pd.DataFrame({'A': [1] * 1000})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({'A': [1]})
    pd.testing.assert_frame_equal(result, expected)

def test_special_characters():
    # DataFrame with string columns containing special characters (e.g., punctuation, whitespace)
    df = pd.DataFrame({'A': ['a', 'a ', 'a', 'A'], 'B': ['x', ' x', 'x', 'X']})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({'A': ['a', 'a ', 'A'], 'B': ['x', ' x', 'X']})
    pd.testing.assert_frame_equal(result, expected)

def test_small_subset():
    # DataFrame with many columns but a subset containing only a few columns
    df = pd.DataFrame({'A': [1, 2, 2, 3], 'B': ['x', 'y', 'y', 'z'], 'C': [10, 20, 20, 30]})
    codeflash_output = drop_duplicates(df, subset=['A', 'B']); result = codeflash_output
    expected = pd.DataFrame({'A': [1, 2, 3], 'B': ['x', 'y', 'z'], 'C': [10, 20, 30]})
    pd.testing.assert_frame_equal(result, expected)

def test_mixed_dataframe():
    # DataFrame with a mix of duplicate and unique rows, some of which are identified by the subset
    df = pd.DataFrame({'A': [1, 2, 2, 3, 4], 'B': ['x', 'y', 'y', 'z', 'x'], 'C': [10, 20, 20, 30, 40]})
    codeflash_output = drop_duplicates(df, subset=['A', 'B']); result = codeflash_output
    expected = pd.DataFrame({'A': [1, 2, 3, 4], 'B': ['x', 'y', 'z', 'x'], 'C': [10, 20, 30, 40]})
    pd.testing.assert_frame_equal(result, expected)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from typing import List  # used for type hinting

import pandas as pd  # used for DataFrame manipulation
# imports
import pytest  # used for our unit tests
from src.numpy_pandas.dataframe_operations import drop_duplicates


# unit tests
def test_basic_functionality():
    # Single Column, No Duplicates
    df = pd.DataFrame({'col1': ['A', 'B', 'C']})
    codeflash_output = drop_duplicates(df, subset=['col1']); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

    # Single Column, With Duplicates
    df = pd.DataFrame({'col1': ['A', 'B', 'A']})
    codeflash_output = drop_duplicates(df, subset=['col1']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B']})
    pd.testing.assert_frame_equal(result, expected)

    # Multiple Columns, No Duplicates
    df = pd.DataFrame({'col1': ['A', 'B', 'C'], 'col2': [1, 2, 3]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

    # Multiple Columns, With Duplicates
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

def test_edge_cases():
    # Empty DataFrame
    df = pd.DataFrame(columns=['col1', 'col2'])
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

    # Single Row DataFrame
    df = pd.DataFrame({'col1': ['A'], 'col2': [1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

    # All Rows Identical
    df = pd.DataFrame({'col1': ['A', 'A', 'A'], 'col2': [1, 1, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A'], 'col2': [1]})
    pd.testing.assert_frame_equal(result, expected)

def test_subset_parameter():
    # Subset is None
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # Subset with One Column
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 3]})
    codeflash_output = drop_duplicates(df, subset=['col1']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # Subset with Multiple Columns
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # Subset with Non-Existent Column
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 1]})
    with pytest.raises(KeyError):
        drop_duplicates(df, subset=['col3'])

def test_data_types():
    # Mixed Data Types
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2.0, '1']})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

    # Numeric Data Types
    df = pd.DataFrame({'col1': [1, 3, 1], 'col2': [2, 4, 2]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': [1, 3], 'col2': [2, 4]})
    pd.testing.assert_frame_equal(result, expected)

    # String Data Types
    df = pd.DataFrame({'col1': ['A', 'C', 'A'], 'col2': ['B', 'D', 'B']})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'C'], 'col2': ['B', 'D']})
    pd.testing.assert_frame_equal(result, expected)

def test_performance_and_scalability():
    # Large DataFrame with No Duplicates
    df = pd.DataFrame({'col1': list(range(1000)), 'col2': list(range(1, 1001))})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = df
    pd.testing.assert_frame_equal(result, expected)

    # Large DataFrame with Duplicates
    df = pd.DataFrame({'col1': [i // 2 for i in range(1000)], 'col2': [i // 2 + 1 for i in range(1000)]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = df.drop_duplicates(subset=['col1', 'col2']).reset_index(drop=True)
    pd.testing.assert_frame_equal(result, expected)

def test_complex_scenarios():
    # DataFrame with NaN Values
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, None, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, None]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Mixed NaN and Non-NaN Values
    df = pd.DataFrame({'col1': ['A', None, 'A'], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', None], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with DateTime Columns
    df = pd.DataFrame({'col1': [pd.Timestamp('2023-01-01'), pd.Timestamp('2023-01-02'), pd.Timestamp('2023-01-01')], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': [pd.Timestamp('2023-01-01'), pd.Timestamp('2023-01-02')], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

def test_rare_edge_cases():
    # DataFrame with Special Characters
    df = pd.DataFrame({'col1': ['A@', 'B#', 'A@'], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A@', 'B#'], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Boolean Values
    df = pd.DataFrame({'col1': [True, False, True], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': [True, False], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Nested Data Structures
    df = pd.DataFrame({'col1': [[1, 2], [3, 4], [1, 2]], 'col2': ['A', 'B', 'A']})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': [[1, 2], [3, 4]], 'col2': ['A', 'B']})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Mixed Data Types in Columns
    df = pd.DataFrame({'col1': ['A', 1, 'A'], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 1], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Duplicate Column Names
    df = pd.DataFrame([['A', 1], ['B', 2], ['A', 1]], columns=['col1', 'col1'])
    codeflash_output = drop_duplicates(df, subset=['col1']); result = codeflash_output
    expected = pd.DataFrame([['A', 1], ['B', 2]], columns=['col1', 'col1'])
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with MultiIndex
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 1]}, index=[['x', 'y', 'x'], [1, 2, 1]])
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, 2]}, index=[['x', 'y'], [1, 2]]).reset_index(drop=True)
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Timezone-Aware DateTime Columns
    df = pd.DataFrame({'col1': [pd.Timestamp('2023-01-01', tz='UTC'), pd.Timestamp('2023-01-02', tz='UTC'), pd.Timestamp('2023-01-01', tz='UTC')], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': [pd.Timestamp('2023-01-01', tz='UTC'), pd.Timestamp('2023-01-02', tz='UTC')], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Object Data Type Columns
    df = pd.DataFrame({'col1': [object(), object(), object()], 'col2': [1, 2, 1]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': [df['col1'][0], df['col1'][1]], 'col2': [1, 2]})
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Custom Index Types
    df = pd.DataFrame({'col1': ['A', 'B', 'A'], 'col2': [1, 2, 1]}, index=pd.Index([1, 2, 3], name='custom_index'))
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'B'], 'col2': [1, 2]}, index=pd.Index([1, 2], name='custom_index')).reset_index(drop=True)
    pd.testing.assert_frame_equal(result, expected)

    # DataFrame with Mixed Encodings
    df = pd.DataFrame({'col1': ['A', 'C', 'A'], 'col2': ['B', 'D', 'B'.encode('utf-8')]})
    codeflash_output = drop_duplicates(df, subset=['col1', 'col2']); result = codeflash_output
    expected = pd.DataFrame({'col1': ['A', 'C'], 'col2': ['B', 'D']})
    pd.testing.assert_frame_equal(result, expected)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-drop_duplicates-m9piw4rh and push.

Codeflash

To improve the performance of this code, we can leverage the built-in `drop_duplicates` method provided by pandas, which is optimized for such operations. Using this built-in method is both faster and more concise. Here is the optimized version of the function.



This optimized version leverages the efficient internal implementation of `drop_duplicates` provided by pandas, significantly improving the runtime.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Apr 20, 2025
@codeflash-ai codeflash-ai bot requested a review from KRRT7 April 20, 2025 10:47
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-drop_duplicates-m9piw4rh branch May 20, 2025 05:34
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant