Skip to content

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Sep 10, 2025

📄 1,305% (13.05x) speedup for dataframe_merge in src/numpy_pandas/dataframe_operations.py

⏱️ Runtime : 119 milliseconds 8.48 milliseconds (best of 267 runs)

📝 Explanation and details

The optimized code achieves a 13x speedup by eliminating pandas' slowest operations and leveraging NumPy arrays for data access.

Key optimizations:

  1. Eliminated .iloc[] calls: The original code used left.iloc[i] and right.iloc[right_idx] for every row access, which are extremely expensive operations. The optimized version extracts the underlying NumPy arrays once using .values and accesses rows directly via array indexing.

  2. Pre-cached column indices: Instead of repeatedly looking up column names during the merge loop, the optimized code pre-computes column indices using get_loc() and stores them in dictionaries for O(1) lookup.

  3. Vectorized right-side dictionary building: Uses enumerate(right_values[:, right_on_idx]) to build the key mapping in one pass, avoiding individual .iloc[] calls for each right DataFrame row.

Performance impact by test case:

  • Large-scale tests show the most dramatic improvements (1300-3800% faster) because the .iloc[] overhead scales poorly with DataFrame size
  • Basic operations with small DataFrames still see 40-100% speedups
  • Edge cases with empty DataFrames show minimal improvement since there's less data to process

The line profiler confirms this: the original code spent 33.4% of time in right.iloc[i][right_on] and 27.6% in left.iloc[i] calls, while the optimized version eliminates these bottlenecks entirely. The optimization is particularly effective for datasets with hundreds or thousands of rows where pandas overhead becomes the dominant cost.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 47 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import random
import string

import pandas as pd
# imports
import pytest  # used for our unit tests
from src.numpy_pandas.dataframe_operations import dataframe_merge

# unit tests

# ----------- BASIC TEST CASES -----------

def test_basic_inner_join_one_match():
    # Test simple join with one matching row
    left = pd.DataFrame({'id': [1], 'val_left': ['a']})
    right = pd.DataFrame({'key': [1], 'val_right': ['b']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 93.8μs -> 68.7μs (36.6% faster)

def test_basic_inner_join_multiple_matches():
    # Test join with multiple matching rows
    left = pd.DataFrame({'id': [1, 2], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [2, 1], 'val_right': ['c', 'd']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 117μs -> 67.5μs (73.9% faster)
    # Check that all expected combinations exist
    expected = [
        {'id': 1, 'val_left': 'a', 'val_right': 'd'},
        {'id': 2, 'val_left': 'b', 'val_right': 'c'}
    ]
    for row in expected:
        pass

def test_basic_no_match():
    # Test join where there are no matching keys
    left = pd.DataFrame({'id': [1], 'val_left': ['a']})
    right = pd.DataFrame({'key': [2], 'val_right': ['b']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 96.6μs -> 85.5μs (13.0% faster)

def test_basic_duplicate_keys():
    # Test join where right has duplicate keys (should produce cartesian product)
    left = pd.DataFrame({'id': [1], 'val_left': ['a']})
    right = pd.DataFrame({'key': [1, 1], 'val_right': ['b', 'c']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 109μs -> 67.8μs (61.1% faster)
    vals = set(result['val_right'])

def test_basic_left_duplicate_keys():
    # Test join where left has duplicate keys
    left = pd.DataFrame({'id': [1, 1], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1], 'val_right': ['c']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 108μs -> 67.1μs (61.7% faster)
    vals = set(result['val_left'])

def test_basic_both_duplicate_keys():
    # Test join where both left and right have duplicate keys
    left = pd.DataFrame({'id': [1, 1], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, 1], 'val_right': ['c', 'd']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 134μs -> 68.0μs (98.0% faster)
    # All combinations should exist
    expected = set((l, r) for l in ['a', 'b'] for r in ['c', 'd'])
    actual = set(zip(result['val_left'], result['val_right']))

def test_basic_column_overlap():
    # Test join where left and right have overlapping column names (other than join key)
    left = pd.DataFrame({'id': [1], 'val': ['a']})
    right = pd.DataFrame({'key': [1], 'val': ['b']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 84.0μs -> 60.0μs (40.1% faster)

def test_basic_non_integer_keys():
    # Test join with string keys
    left = pd.DataFrame({'id': ['x', 'y'], 'val_left': [1, 2]})
    right = pd.DataFrame({'key': ['y', 'z'], 'val_right': [3, 4]})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 105μs -> 64.5μs (62.9% faster)

# ----------- EDGE TEST CASES -----------

def test_edge_empty_left():
    # Test join with empty left DataFrame
    left = pd.DataFrame({'id': [], 'val_left': []})
    right = pd.DataFrame({'key': [1], 'val_right': ['a']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 82.3μs -> 80.8μs (1.96% faster)

def test_edge_empty_right():
    # Test join with empty right DataFrame
    left = pd.DataFrame({'id': [1], 'val_left': ['a']})
    right = pd.DataFrame({'key': [], 'val_right': []})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 80.8μs -> 79.2μs (1.95% faster)

def test_edge_both_empty():
    # Test join with both DataFrames empty
    left = pd.DataFrame({'id': [], 'val_left': []})
    right = pd.DataFrame({'key': [], 'val_right': []})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 62.6μs -> 72.0μs (13.1% slower)

def test_edge_missing_left_on_column():
    # Test error when left_on column is missing
    left = pd.DataFrame({'idx': [1], 'val_left': ['a']})
    right = pd.DataFrame({'key': [1], 'val_right': ['b']})
    with pytest.raises(KeyError):
        dataframe_merge(left, right, 'id', 'key') # 35.8μs -> 6.88μs (421% faster)

def test_edge_missing_right_on_column():
    # Test error when right_on column is missing
    left = pd.DataFrame({'id': [1], 'val_left': ['a']})
    right = pd.DataFrame({'k': [1], 'val_right': ['b']})
    with pytest.raises(KeyError):
        dataframe_merge(left, right, 'id', 'key') # 20.8μs -> 8.88μs (134% faster)

def test_edge_null_keys():
    # Test join with NaN/null keys
    left = pd.DataFrame({'id': [1, None], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, None], 'val_right': ['c', 'd']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 110μs -> 68.9μs (61.0% faster)

def test_edge_mixed_types_keys():
    # Test join with mixed types in join keys
    left = pd.DataFrame({'id': [1, '1'], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, '1'], 'val_right': ['c', 'd']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 94.9μs -> 55.4μs (71.3% faster)
    pairs = set(zip(result['val_left'], result['val_right']))

def test_edge_non_unique_columns():
    # Test join with duplicate column names in right (should not happen in pandas, but test for robustness)
    left = pd.DataFrame({'id': [1], 'val': ['a']})
    right = pd.DataFrame({'key': [1], 'val': ['b'], 'val2': ['c']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 89.8μs -> 67.1μs (33.8% faster)

def test_edge_column_order_preserved():
    # Test that column order is left columns, then right (excluding join key)
    left = pd.DataFrame({'id': [1], 'a': [2]})
    right = pd.DataFrame({'key': [1], 'b': [3], 'c': [4]})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 72.8μs -> 49.6μs (46.6% faster)

def test_edge_right_on_is_also_left_col():
    # Test if right_on column is also present in left, it should not be duplicated
    left = pd.DataFrame({'id': [1], 'key': [5]})
    right = pd.DataFrame({'key': [1], 'val': [10]})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 67.6μs -> 45.6μs (48.1% faster)

# ----------- LARGE SCALE TEST CASES -----------

def test_large_scale_all_match():
    # Test join with 1000 rows, all keys match
    n = 1000
    left = pd.DataFrame({'id': list(range(n)), 'left_val': list(range(n, 2*n))})
    right = pd.DataFrame({'key': list(range(n)), 'right_val': list(range(2*n, 3*n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 16.5ms -> 1.14ms (1339% faster)
    # Check a few random rows
    for i in [0, n//2, n-1]:
        row = result[result['id'] == i].iloc[0]

def test_large_scale_no_match():
    # Test join with 1000 rows, no keys match
    n = 1000
    left = pd.DataFrame({'id': list(range(n)), 'left_val': list(range(n))})
    right = pd.DataFrame({'key': list(range(n, 2*n)), 'right_val': list(range(n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 9.65ms -> 244μs (3852% faster)

def test_large_scale_some_matches():
    # Test join with 1000 rows, half keys match
    n = 1000
    left = pd.DataFrame({'id': list(range(n)), 'left_val': list(range(n))})
    right = pd.DataFrame({'key': list(range(n//2, n + n//2)), 'right_val': list(range(n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 13.0ms -> 671μs (1835% faster)
    # Check a few matches
    for i in [n//2, n//2+10, n-1]:
        if i < n:
            idx = i - n//2
            if 0 <= idx < n:
                row = result[result['id'] == i]
                if not row.empty:
                    pass

def test_large_scale_duplicates():
    # Test join where right has duplicate keys, left has unique
    n = 200
    left = pd.DataFrame({'id': list(range(n)), 'left_val': list(range(n))})
    # Each key in right appears twice
    right = pd.DataFrame({'key': [i//2 for i in range(2*n)], 'right_val': list(range(2*n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 5.58ms -> 426μs (1210% faster)
    for i in range(n):
        matches = result[result['id'] == i]
        vals = set(matches['right_val'])
        expected = {2*i, 2*i+1}

def test_large_scale_string_keys():
    # Test join with large number of string keys
    n = 500
    keys = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(n)]
    left = pd.DataFrame({'id': keys, 'left_val': list(range(n))})
    right = pd.DataFrame({'key': keys, 'right_val': list(range(n, 2*n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 11.9ms -> 410μs (2808% faster)
    # Check a few random rows
    for i in [0, n//2, n-1]:
        row = result[result['id'] == keys[i]].iloc[0]

def test_large_scale_performance():
    # Test join with 1000 rows, random keys, some matches, ensure completes in reasonable time
    n = 1000
    keys_left = [random.randint(0, 1499) for _ in range(n)]
    keys_right = [random.randint(0, 1499) for _ in range(n)]
    left = pd.DataFrame({'id': keys_left, 'left_val': list(range(n))})
    right = pd.DataFrame({'key': keys_right, 'right_val': list(range(n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 14.0ms -> 832μs (1582% faster)
    # All rows in result must have id == key from left/right
    for idx, row in result.iterrows():
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import random
import string
import sys

import pandas as pd
# imports
import pytest  # used for our unit tests
from src.numpy_pandas.dataframe_operations import dataframe_merge

# unit tests

# -----------------------------
# BASIC TEST CASES
# -----------------------------

def test_basic_inner_join_single_match():
    # Simple inner join with one matching row
    left = pd.DataFrame({'id': [1, 2], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [2, 3], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 111μs -> 69.8μs (59.8% faster)

def test_basic_inner_join_multiple_matches():
    # Multiple matches, including duplicate keys in right
    left = pd.DataFrame({'id': [1, 2], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [2, 2], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 117μs -> 68.3μs (72.6% faster)
    vals = set(result['val_right'])

def test_basic_no_matches():
    # No keys match
    left = pd.DataFrame({'id': [1, 2], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [3, 4], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 114μs -> 86.9μs (32.1% faster)

def test_basic_all_match():
    # All keys match
    left = pd.DataFrame({'id': [1, 2], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, 2], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 118μs -> 68.0μs (74.0% faster)

def test_basic_column_order_and_names():
    # Ensure columns are ordered: left columns first, then right (except join key)
    left = pd.DataFrame({'foo': [1], 'bar': [2]})
    right = pd.DataFrame({'baz': [1], 'qux': [3]})
    codeflash_output = dataframe_merge(left, right, 'foo', 'baz'); result = codeflash_output # 70.1μs -> 46.6μs (50.4% faster)

# -----------------------------
# EDGE TEST CASES
# -----------------------------

def test_edge_empty_left():
    # Left DataFrame is empty
    left = pd.DataFrame({'id': [], 'val_left': []})
    right = pd.DataFrame({'key': [1, 2], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 92.4μs -> 80.7μs (14.5% faster)

def test_edge_empty_right():
    # Right DataFrame is empty
    left = pd.DataFrame({'id': [1, 2], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [], 'val_right': []})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 90.8μs -> 79.9μs (13.7% faster)

def test_edge_both_empty():
    # Both DataFrames are empty
    left = pd.DataFrame({'id': [], 'val_left': []})
    right = pd.DataFrame({'key': [], 'val_right': []})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 62.4μs -> 71.8μs (13.1% slower)

def test_edge_duplicate_keys_in_left():
    # Duplicate join keys in left DataFrame
    left = pd.DataFrame({'id': [1, 1, 2], 'val_left': ['a', 'b', 'c']})
    right = pd.DataFrame({'key': [1, 2], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 135μs -> 69.2μs (95.6% faster)

def test_edge_duplicate_keys_in_both():
    # Duplicate join keys in both DataFrames
    left = pd.DataFrame({'id': [1, 1], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, 1], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 136μs -> 68.4μs (100% faster)
    # All combinations present
    left_vals = set(result['val_left'])
    right_vals = set(result['val_right'])

def test_edge_non_overlapping_columns():
    # Columns in right not present in left and vice versa
    left = pd.DataFrame({'id': [1], 'foo': ['bar']})
    right = pd.DataFrame({'key': [1], 'baz': ['qux']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 91.6μs -> 67.5μs (35.7% faster)

def test_edge_left_on_not_in_left():
    # left_on does not exist in left DataFrame
    left = pd.DataFrame({'foo': [1]})
    right = pd.DataFrame({'key': [1], 'val': ['x']})
    with pytest.raises(KeyError):
        dataframe_merge(left, right, 'id', 'key') # 32.4μs -> 6.79μs (377% faster)

def test_edge_right_on_not_in_right():
    # right_on does not exist in right DataFrame
    left = pd.DataFrame({'id': [1]})
    right = pd.DataFrame({'foo': [1], 'val': ['x']})
    with pytest.raises(KeyError):
        dataframe_merge(left, right, 'id', 'key') # 21.0μs -> 8.92μs (136% faster)

def test_edge_null_values_in_join_columns():
    # Null values in join columns should not match
    left = pd.DataFrame({'id': [1, None], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, None], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 111μs -> 68.7μs (62.9% faster)

def test_edge_different_types_in_join_columns():
    # Join columns with different types should not match
    left = pd.DataFrame({'id': [1, '2'], 'val_left': ['a', 'b']})
    right = pd.DataFrame({'key': [1, 2], 'val_right': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 104μs -> 62.1μs (68.5% faster)

def test_edge_empty_column_names():
    # Join columns with empty string as name
    left = pd.DataFrame({'': [1, 2], 'foo': ['a', 'b']})
    right = pd.DataFrame({'': [2, 3], 'bar': ['x', 'y']})
    codeflash_output = dataframe_merge(left, right, '', ''); result = codeflash_output # 108μs -> 67.3μs (61.5% faster)

def test_edge_column_name_collision():
    # Right DataFrame has a column with same name as a left column (other than join key)
    left = pd.DataFrame({'id': [1], 'val': ['a']})
    right = pd.DataFrame({'key': [1], 'val': ['b']})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 84.8μs -> 60.2μs (40.9% faster)

# -----------------------------
# LARGE SCALE TEST CASES
# -----------------------------

def test_large_scale_all_match():
    # Large DataFrames, all keys match
    n = 500
    left = pd.DataFrame({'id': range(n), 'val_left': list(range(n))})
    right = pd.DataFrame({'key': range(n), 'val_right': list(range(n, 2*n))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 8.22ms -> 580μs (1316% faster)
    # Check a few random rows
    for i in [0, n//2, n-1]:
        row = result[result['id'] == i]

def test_large_scale_no_match():
    # Large DataFrames, no keys match
    n = 500
    left = pd.DataFrame({'id': range(n)})
    right = pd.DataFrame({'key': range(n, 2*n)})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 4.86ms -> 156μs (3013% faster)

def test_large_scale_many_to_many():
    # Many-to-many: each left key matches multiple right keys
    n = 100
    left = pd.DataFrame({'id': [i//2 for i in range(n)], 'val_left': range(n)})
    right = pd.DataFrame({'key': [i//2 for i in range(n)], 'val_right': range(n)})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 2.31ms -> 229μs (908% faster)
    # For each unique key, there are about n/2 left and n/2 right, so n/2 * n/2 matches per key
    # But since keys repeat, total rows should be sum of product of counts per key
    from collections import Counter
    left_counts = Counter(left['id'])
    right_counts = Counter(right['key'])
    expected_rows = sum(left_counts[k] * right_counts[k] for k in left_counts)

def test_large_scale_randomized_keys():
    # Randomized keys, some matches, some not
    n = 500
    keys = random.sample(range(1000), n)
    left_keys = keys[:n//2]
    right_keys = keys[n//4:n*3//4]
    left = pd.DataFrame({'id': left_keys, 'val_left': range(len(left_keys))})
    right = pd.DataFrame({'key': right_keys, 'val_right': range(len(right_keys))})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 3.28ms -> 202μs (1518% faster)
    # Only keys in both left_keys and right_keys should match
    expected_keys = set(left_keys) & set(right_keys)

def test_large_scale_string_keys():
    # Large DataFrames with string keys
    n = 500
    def randstr(): return ''.join(random.choices(string.ascii_letters, k=8))
    keys = [randstr() for _ in range(n)]
    left = pd.DataFrame({'id': keys, 'val_left': range(n)})
    right = pd.DataFrame({'key': keys, 'val_right': range(n)})
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 11.9ms -> 415μs (2777% faster)

def test_large_scale_performance():
    # Performance test: should not be excessively slow
    n = 900
    left = pd.DataFrame({'id': range(n), 'val_left': range(n)})
    right = pd.DataFrame({'key': range(n), 'val_right': range(n)})
    import time
    start = time.time()
    codeflash_output = dataframe_merge(left, right, 'id', 'key'); result = codeflash_output # 14.7ms -> 1.03ms (1329% faster)
    elapsed = time.time() - start
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-dataframe_merge-mfejj4uk and push.

Codeflash

The optimized code achieves a **13x speedup** by eliminating pandas' slowest operations and leveraging NumPy arrays for data access.

**Key optimizations:**

1. **Eliminated `.iloc[]` calls**: The original code used `left.iloc[i]` and `right.iloc[right_idx]` for every row access, which are extremely expensive operations. The optimized version extracts the underlying NumPy arrays once using `.values` and accesses rows directly via array indexing.

2. **Pre-cached column indices**: Instead of repeatedly looking up column names during the merge loop, the optimized code pre-computes column indices using `get_loc()` and stores them in dictionaries for O(1) lookup.

3. **Vectorized right-side dictionary building**: Uses `enumerate(right_values[:, right_on_idx])` to build the key mapping in one pass, avoiding individual `.iloc[]` calls for each right DataFrame row.

**Performance impact by test case:**
- **Large-scale tests** show the most dramatic improvements (1300-3800% faster) because the `.iloc[]` overhead scales poorly with DataFrame size
- **Basic operations** with small DataFrames still see 40-100% speedups 
- **Edge cases** with empty DataFrames show minimal improvement since there's less data to process

The line profiler confirms this: the original code spent 33.4% of time in `right.iloc[i][right_on]` and 27.6% in `left.iloc[i]` calls, while the optimized version eliminates these bottlenecks entirely. The optimization is particularly effective for datasets with hundreds or thousands of rows where pandas overhead becomes the dominant cost.
@codeflash-ai codeflash-ai bot requested a review from aseembits93 September 10, 2025 22:18
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Sep 10, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants