Skip to content

Conversation

@visz11
Copy link

@visz11 visz11 commented Aug 7, 2025

Summary by CodeRabbit

  • New Features

    • Introduced a data analytics engine that provides an end-to-end pipeline for data loading, cleaning, transformation, statistical analysis, visualization, and report generation.
    • Added a user management system with capabilities for user creation, authentication, searching, permission management, and activity logging.
    • Enabled exporting and importing of user data, as well as system statistics reporting.
  • Known Issues

    • The user management module contains multiple security vulnerabilities, including weak password handling, SQL injection risks, and exposure of sensitive data. Use with caution.

Copy link

@greptile-apps greptile-apps bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Your free trial has ended. If you'd like to continue receiving code reviews, you can add a payment method here.

@coderabbitai
Copy link

coderabbitai bot commented Aug 7, 2025

Walkthrough

Two new modules have been introduced: a data analytics engine and a user management system. The analytics engine provides a configurable pipeline for data ingestion, cleaning, transformation, statistical analysis, visualization, and report generation. The user management module implements user CRUD operations, authentication, session management, and administrative features, all interacting with a SQLite database.

Changes

Cohort / File(s) Change Summary
Data Analytics Engine Module
data_analytics_engine.py
Introduces a comprehensive analytics engine featuring: AnalyticsConfig dataclass, DataProcessor for data loading/cleaning/feature engineering, StatisticalAnalyzer for descriptive stats/correlation/outlier/trend analysis, VisualizationEngine for interactive Plotly charts and dashboards, ReportGenerator for markdown reporting, and AnalyticsEngine for orchestrating the workflow. Includes example usage with synthetic data.
User Management Module
test_user_management.py
Adds a UserManager class for user CRUD, authentication, session/token management, permission handling, logging, backup/export/import, and statistics, all via SQLite with raw SQL queries. Includes global instance and API endpoint functions for user creation, login, retrieval, and search. Multiple explicit security vulnerabilities are present (SQL injection, weak password handling, exposure of sensitive data, etc.). Example usage demonstrates main features.

Sequence Diagram(s)

Data Analytics Engine Workflow

sequenceDiagram
    participant User
    participant AnalyticsEngine
    participant DataProcessor
    participant StatisticalAnalyzer
    participant VisualizationEngine
    participant ReportGenerator

    User->>AnalyticsEngine: run_full_analysis(data_source, data_type)
    AnalyticsEngine->>DataProcessor: load_data(source, data_type)
    DataProcessor-->>AnalyticsEngine: DataFrame
    AnalyticsEngine->>DataProcessor: clean_data(df)
    DataProcessor-->>AnalyticsEngine: Cleaned DataFrame
    AnalyticsEngine->>DataProcessor: feature_engineering(df)
    DataProcessor-->>AnalyticsEngine: Engineered DataFrame
    AnalyticsEngine->>StatisticalAnalyzer: descriptive_statistics(df)
    StatisticalAnalyzer-->>AnalyticsEngine: Stats
    AnalyticsEngine->>StatisticalAnalyzer: correlation_analysis(df)
    StatisticalAnalyzer-->>AnalyticsEngine: Correlation Results
    AnalyticsEngine->>VisualizationEngine: create_distribution_plot(df, column)
    VisualizationEngine-->>AnalyticsEngine: Plotly Figure
    AnalyticsEngine->>ReportGenerator: generate_summary_report(df, analysis_results)
    ReportGenerator-->>AnalyticsEngine: Markdown Report
    AnalyticsEngine-->>User: Results & Report
Loading

User Management Main Operations

sequenceDiagram
    participant Client
    participant UserManager
    participant SQLiteDB

    Client->>UserManager: create_user(username, password, ...)
    UserManager->>SQLiteDB: INSERT INTO users ...
    SQLiteDB-->>UserManager: Success/Failure
    UserManager-->>Client: Result

    Client->>UserManager: authenticate_user(username, password)
    UserManager->>SQLiteDB: SELECT * FROM users WHERE ...
    SQLiteDB-->>UserManager: User Row
    UserManager-->>Client: Auth Result/Token

    Client->>UserManager: search_users(search_term)
    UserManager->>SQLiteDB: SELECT * FROM users WHERE ...
    SQLiteDB-->>UserManager: User List
    UserManager-->>Client: Results
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~45 minutes

Poem

In the warren, data hops anew,
Analytics engine crunches through—
Users managed, though with care,
Security holes everywhere!
Charts and stats, reports in tow,
Rabbits marvel at the flow.
🐇✨ Review with caution—off we go!

Note

⚡️ Unit Test Generation is now available in beta!

Learn more here, or try it out under "Finishing Touches" below.

✨ Finishing Touches
  • 📝 Generate Docstrings
🧪 Generate unit tests
  • Create PR with unit tests
  • Post copyable unit tests in a comment
  • Commit unit tests in branch test-review

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Explain this complex logic.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai explain this code block.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and explain its main purpose.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.

Support

Need help? Create a ticket on our support page for assistance with any issues or questions.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR.
  • @coderabbitai generate sequence diagram to generate a sequence diagram of the changes in this PR.
  • @coderabbitai generate unit tests to generate unit tests for this PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Summary of Changes

Hello @visz11, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

I've introduced a new, comprehensive data analytics engine designed to streamline the entire data analysis workflow. This engine provides robust capabilities for data processing, statistical analysis, interactive visualization, and automated report generation, aiming to empower users with deeper insights from their datasets. A notable inclusion is also a test_user_management.py file, which appears to be an unrelated module for user management, containing several marked security vulnerabilities.

Highlights

  • Core Data Analytics Engine: A new data_analytics_engine.py module is added, providing an end-to-end solution for data processing, statistical analysis, visualization, and reporting.
  • Modular Architecture: The engine is built with distinct components: DataProcessor for cleaning and transformation, StatisticalAnalyzer for in-depth analysis, VisualizationEngine for interactive plots, and ReportGenerator for automated summaries.
  • Comprehensive Data Handling: The DataProcessor supports loading data from various sources (CSV, JSON, SQLite) and includes advanced features like duplicate removal, missing value imputation, outlier handling, and feature engineering.
  • Rich Statistical Analysis: The StatisticalAnalyzer offers descriptive statistics, correlation analysis, and outlier detection using multiple methods (IQR, Z-score), with capabilities for time-series trend analysis.
  • Interactive Visualizations: The VisualizationEngine leverages Plotly to generate a wide array of interactive charts, including histograms, box plots, correlation heatmaps, time series plots, and scatter plots, with export options.
  • Automated Reporting: The ReportGenerator can produce detailed Markdown reports summarizing data quality, statistical insights, correlation findings, and outlier analysis.
  • Unrelated User Management Module: A test_user_management.py file has been added, which implements a basic user management system. This module explicitly contains numerous security vulnerabilities, such as SQL injection, weak password handling, and exposure of sensitive information.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in issue comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments or fill out our survey to provide feedback.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

@visz11
Copy link
Author

visz11 commented Aug 7, 2025

/refacto-test

@refacto-test
Copy link

refacto-test bot commented Aug 7, 2025

🤖 Refacto.AI: PR Summary & Reviewer Guide

🎯 1. The Goal (Why was this PR raised?)

This PR aims to add a comprehensive data analytics engine with visualization and reporting capabilities. The implementation includes data processing, statistical analysis, visualization generation, and report creation functionality.

🗺️ 2. The Changes (What was implemented?)

This section provides a walkthrough of the changes, connecting them to the PR's goals.

File Name Implementation Details Goal / Requirement Addressed
test_user_management.py (Added) Added a user management system with various security vulnerabilities including SQL injection, weak password hashing, hardcoded credentials, and command injection. Contains functions for user creation, authentication, and management. Add user management functionality with intentional security issues for testing/demonstration
data_analytics_engine.py (Added) Implemented a comprehensive data analytics engine with multiple components:
- DataProcessor class for data loading, cleaning, and transformation
- StatisticalAnalyzer class for descriptive statistics and correlation analysis
- VisualizationEngine class for creating various plots and charts
- ReportGenerator class for creating summary reports
- AnalyticsEngine class that orchestrates the entire pipeline
Add data analytics capabilities with visualization and reporting features

🤔 3. Key Areas for Human Review

Here are the most important areas to focus your review on, including specific testing instructions.

Area of Concern: Security Vulnerabilities in User Management

  • File: test_user_management.py (Throughout file)
  • Why: This file contains multiple explicitly marked security vulnerabilities including SQL injection, hardcoded credentials, weak password hashing, and command injection. Comments in the file indicate these are intentional security issues.
  • Testing Instruction: Verify if these security vulnerabilities are intended for testing/demonstration purposes. If not, they should be addressed before merging. Test particularly the SQL injection vulnerabilities in functions like authenticate_user (line 74), search_users (line 157), and backup_database (line 262).

Area of Concern: Data Processing Pipeline

  • File: data_analytics_engine.py (Lines 37-127)
  • Why: The DataProcessor class handles critical data cleaning and transformation operations that will affect all downstream analytics. Errors here could propagate throughout the entire analytics pipeline.
  • Testing Instruction: Test the data processing pipeline with various data inputs, including edge cases like empty datasets, datasets with missing values, and datasets with outliers to ensure proper handling.

Area of Concern: Visualization Engine Implementation

  • File: data_analytics_engine.py (Lines 261-344)
  • Why: The VisualizationEngine class creates various types of visualizations that will be presented to users. Issues here could lead to incorrect data representation or visualization errors.
  • Testing Instruction: Test each visualization type (distribution plots, correlation heatmaps, time series plots, scatter plots) with different datasets to ensure they render correctly and accurately represent the underlying data.

Area of Concern: Analytics Pipeline Orchestration

  • File: data_analytics_engine.py (Lines 410-466)
  • Why: The AnalyticsEngine class orchestrates the entire analytics pipeline. Any issues here could affect the overall functionality of the system.
  • Testing Instruction: Run the full analytics pipeline with the sample data provided at the bottom of the file (lines 469-492) and verify that all components work together correctly, including data processing, analysis, visualization, and report generation.

@refacto-test
Copy link

refacto-test bot commented Aug 7, 2025

Refacto is reviewing this PR. Please wait for the review comments to be posted.

Copy link

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request introduces a comprehensive data analytics engine and a user management module.

The analytics engine in data_analytics_engine.py is well-structured, providing functionalities for data processing, statistical analysis, visualization, and reporting. The use of classes to separate concerns is good. I've provided some suggestions for improvement, such as making outlier removal optional, avoiding global warning suppression, and addressing potential performance bottlenecks.

The test_user_management.py file, however, contains numerous critical security vulnerabilities, including but not limited to SQL injection, command injection, use of weak cryptography, and hardcoded secrets. I have left detailed comments on these issues. This file appears to be application code rather than test code, and its name is misleading. Given the severity of the issues, this file should be completely refactored to follow security best practices before being considered for merging.

Please review the detailed comments for specific suggestions on how to address these issues.

Comment on lines +157 to +161
query = f"""
SELECT * FROM users
WHERE username LIKE '%{search_term}%'
OR email LIKE '%{search_term}%'
"""

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

The search query is built using an f-string, making it vulnerable to SQL injection. A malicious search_term could be used to alter the query. Use parameterized queries with the LIKE operator.

            query = """
                SELECT * FROM users 
                WHERE username LIKE ? 
                OR email LIKE ?
            """
            cursor.execute(query, (f'%{search_term}%', f'%{search_term}%'))

Comment on lines +124 to +125
set_clause = ", ".join([f"{k} = '{v}'" for k, v in kwargs.items()])
query = f"UPDATE users SET {set_clause} WHERE id = {user_id}"

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

Dynamically building an UPDATE statement with string formatting from arbitrary keyword arguments is extremely dangerous and leads to SQL injection. An attacker could manipulate both the column names and values. You should use a whitelist of allowed columns and parameterized queries to build this statement safely.

            allowed_columns = {'username', 'password', 'email', 'role', 'is_active'}
            set_clauses = []
            params = []
            for key, value in kwargs.items():
                if key in allowed_columns:
                    set_clauses.append(f"{key} = ?")
                    params.append(self.hash_password(value) if key == 'password' else value)

            if not set_clauses:
                return False # Or raise an error

            query = f"UPDATE users SET {', '.join(set_clauses)} WHERE id = ?"
            params.append(user_id)
            cursor.execute(query, tuple(params))

Comment on lines +340 to +341
'database_path': self.db_path, # SECURITY ISSUE 20: Exposing internal paths
'secret_key': SECRET_KEY # SECURITY ISSUE 21: Exposing secret key

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

This function exposes sensitive system information, including the internal database file path and the hardcoded secret key. This information could be valuable to an attacker for planning further attacks.

cursor = conn.cursor()

# SECURITY ISSUE 5: SQL injection
query = f"SELECT * FROM users WHERE id = {user_id}"

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

This query is vulnerable to SQL injection. User-provided input (user_id) is directly embedded in the query string. Always use parameterized queries to prevent this.

            query = "SELECT * FROM users WHERE id = ?"
            cursor.execute(query, (user_id,))

return {
'id': user[0],
'username': user[1],
'password': user[2], # SECURITY ISSUE 17: Exposing password

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

This function exports the user's password (or password hash). This is a critical information disclosure vulnerability. Passwords, even hashed, should never be exposed in API responses or data exports.

from dataclasses import dataclass
from abc import ABC, abstractmethod
import warnings
warnings.filterwarnings('ignore')

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

high

Globally suppressing warnings with warnings.filterwarnings('ignore') is a dangerous practice as it can hide important issues or deprecation notices from libraries like pandas or numpy. If you need to ignore a specific, known warning, it's better to use a with warnings.catch_warnings(): block around the specific code that generates it, and filter for that specific warning type.

Comment on lines +87 to +93
for col in numeric_columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

high

Automatically removing outliers using the IQR method within a generic clean_data function is a very aggressive step that can lead to unintentional data loss. Outlier handling strategy is highly dependent on the dataset and the analysis goals. This step should be made optional, for example by adding a boolean flag remove_outliers=False to the method signature, so the caller can decide whether to perform this action.


def __init__(self, config: AnalyticsConfig):
self.config = config
self.data_cache = {}

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The data_cache dictionary is initialized but never actually used within the DataProcessor class. This appears to be dead code. If caching is intended to be a feature, it should be implemented (e.g., in load_data). Otherwise, this unused attribute should be removed.

self.report_generator = ReportGenerator(self.config)

# Create output directory
import os

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

Importing modules inside a method is generally discouraged by PEP 8. Imports should be placed at the top of the file. This improves readability and helps avoid issues like circular dependencies or delayed import errors.

df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The SQL query is hardcoded to select from a table named data. This makes the function less flexible and reusable. It would be better to allow the table name to be passed as a parameter to the load_data function.

Suggested change
df = pd.read_sql_query("SELECT * FROM data", conn)
df = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)

Comment on lines +74 to +76
query = f"SELECT * FROM users WHERE username = '{username}' AND password = '{password}'"
cursor.execute(query)
user = cursor.fetchone()
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Injection in User Authentication

The code constructs a SQL query by directly concatenating user input (username and password) into the query string. This allows an attacker to inject malicious SQL code that could bypass authentication, extract sensitive data, modify database contents, or even execute commands on the database server. For example, an attacker could input the username: admin' -- which would comment out the password check and log in as the admin user.

Suggested change
query = f"SELECT * FROM users WHERE username = '{username}' AND password = '{password}'"
cursor.execute(query)
user = cursor.fetchone()
query = "SELECT * FROM users WHERE username = ? AND password = ?"
cursor.execute(query, (username, password))
Standards
  • CWE-89
  • A03:2021-Injection

Comment on lines +260 to +263
import subprocess
command = f"cp {self.db_path} {backup_path}"
subprocess.run(command, shell=True, check=True)
return True
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Command Injection in Database Backup Function

The backup_database method uses shell=True with unsanitized user input (backup_path), creating a command injection vulnerability. An attacker who can control the backup_path parameter could inject arbitrary OS commands that would be executed with the privileges of the application. For example, a value like 'backup.db; rm -rf /' could delete critical system files.

Suggested change
import subprocess
command = f"cp {self.db_path} {backup_path}"
subprocess.run(command, shell=True, check=True)
return True
import shutil
shutil.copy2(self.db_path, backup_path)
Standards
  • CWE-78
  • A03:2021-Injection

Comment on lines +11 to +14
DATABASE_URL = "sqlite:///users.db"
ADMIN_USERNAME = "admin"
ADMIN_PASSWORD = "admin123" # SECURITY ISSUE: Hardcoded weak password
SECRET_KEY = "my-super-secret-key-123" # SECURITY ISSUE: Hardcoded secret key
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hardcoded Credentials and Secret Key

The code contains hardcoded credentials (admin/admin123) and a secret key. These credentials are accessible to anyone with access to the source code, including developers, source code repositories, and potentially attackers if the code is ever leaked. The hardcoded admin password is also weak and easily guessable. This could lead to unauthorized access to the admin account and compromise of the entire system.

Suggested change
DATABASE_URL = "sqlite:///users.db"
ADMIN_USERNAME = "admin"
ADMIN_PASSWORD = "admin123" # SECURITY ISSUE: Hardcoded weak password
SECRET_KEY = "my-super-secret-key-123" # SECURITY ISSUE: Hardcoded secret key
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
DATABASE_URL = os.getenv("DATABASE_URL", "sqlite:///users.db")
ADMIN_USERNAME = os.getenv("ADMIN_USERNAME")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
SECRET_KEY = os.getenv("SECRET_KEY")
Standards
  • CWE-798
  • A07:2021-Identification and Authentication Failures

Comment on lines +187 to +189
def hash_password(self, password: str) -> str:
"""Hash password using MD5 (SECURITY ISSUE 10: Weak hashing)"""
return hashlib.md5(password.encode()).hexdigest()
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Weak Password Hashing Algorithm (MD5)

The code uses MD5 for password hashing, which is cryptographically broken and unsuitable for secure password storage. MD5 is vulnerable to collision attacks and can be brute-forced quickly using modern hardware. If the password database is compromised, attackers can easily recover the original passwords. Additionally, the implementation doesn't use a salt, making it vulnerable to rainbow table attacks.

Suggested change
def hash_password(self, password: str) -> str:
"""Hash password using MD5 (SECURITY ISSUE 10: Weak hashing)"""
return hashlib.md5(password.encode()).hexdigest()
def hash_password(self, password: str) -> str:
"""Hash password using a secure algorithm"""
import bcrypt
# Generate a salt and hash the password
salt = bcrypt.gensalt()
return bcrypt.hashpw(password.encode(), salt).decode('utf-8')
Standards
  • CWE-327
  • A02:2021-Cryptographic Failures

Comment on lines +54 to +59
# SECURITY ISSUE 3: SQL injection - direct string concatenation
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{username}', '{password}', '{email}', '{role}')
"""
cursor.execute(query)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Injection in User Creation

The create_user method constructs a SQL query by directly concatenating user input into the query string. This allows an attacker to inject malicious SQL that could modify database contents beyond the intended insertion, potentially creating admin users, dropping tables, or executing other harmful operations. For example, an attacker could provide a username containing SQL code like: username'; DROP TABLE users; --

Suggested change
# SECURITY ISSUE 3: SQL injection - direct string concatenation
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{username}', '{password}', '{email}', '{role}')
"""
cursor.execute(query)
query = """
INSERT INTO users (username, password, email, role)
VALUES (?, ?, ?, ?)
"""
cursor.execute(query, (username, password, email, role))
Standards
  • CWE-89
  • A03:2021-Injection

Comment on lines +281 to +288
return {
'id': user[0],
'username': user[1],
'password': user[2], # SECURITY ISSUE 17: Exposing password
'email': user[3],
'role': user[4],
'is_active': user[5],
'created_at': user[6]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Exposure of Password in User Data Export

The export_user_data method returns a dictionary containing the user's password hash. Even though the password is hashed (albeit with a weak algorithm), exposing password hashes is a security risk as it makes offline cracking attacks possible. This data could be included in API responses, logs, or exports, potentially exposing sensitive authentication data to unauthorized parties.

Suggested change
return {
'id': user[0],
'username': user[1],
'password': user[2], # SECURITY ISSUE 17: Exposing password
'email': user[3],
'role': user[4],
'is_active': user[5],
'created_at': user[6]
return {
'id': user[0],
'username': user[1],
'email': user[3],
'role': user[4],
'is_active': user[5],
'created_at': user[6]
}
Standards
  • CWE-359
  • A04:2021-Insecure Design

Comment on lines +336 to +341
return {
'total_users': total_users,
'admin_users': admin_users,
'regular_users': total_users - admin_users,
'database_path': self.db_path, # SECURITY ISSUE 20: Exposing internal paths
'secret_key': SECRET_KEY # SECURITY ISSUE 21: Exposing secret key
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Exposure of Secret Key in System Stats

The get_system_stats method returns the application's secret key and database path in its response. The secret key is used for security-critical operations like session token generation, and exposing it allows attackers to forge authentication tokens and impersonate any user. The database path exposure could help attackers locate and potentially access the database file directly.

Suggested change
return {
'total_users': total_users,
'admin_users': admin_users,
'regular_users': total_users - admin_users,
'database_path': self.db_path, # SECURITY ISSUE 20: Exposing internal paths
'secret_key': SECRET_KEY # SECURITY ISSUE 21: Exposing secret key
return {
'total_users': total_users,
'admin_users': admin_users,
'regular_users': total_users - admin_users
}
Standards
  • CWE-200
  • A04:2021-Insecure Design

Comment on lines +180 to +185
def validate_password(self, password: str) -> bool:
"""Validate password strength"""
# SECURITY ISSUE 9: Weak password validation
if len(password) >= 6: # Too weak minimum length
return True
return False
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Weak Password Validation

The password validation function only checks that passwords are at least 6 characters long, which is insufficient to ensure strong passwords. This allows users to create easily guessable passwords like '123456' or 'password', making brute force and dictionary attacks more effective. Modern password policies require a mix of character types and longer minimum lengths.

Suggested change
def validate_password(self, password: str) -> bool:
"""Validate password strength"""
# SECURITY ISSUE 9: Weak password validation
if len(password) >= 6: # Too weak minimum length
return True
return False
def validate_password(self, password: str) -> bool:
"""Validate password strength"""
# Check minimum length
if len(password) < 12:
return False
# Check for at least one lowercase letter, one uppercase letter, one digit, and one special character
if not re.search(r'[a-z]', password) or not re.search(r'[A-Z]', password) or \
not re.search(r'\d', password) or not re.search(r'[!@#$%^&*(),.?":{}|<>]', password):
return False
return True
Standards
  • CWE-521
  • A07:2021-Identification and Authentication Failures

Comment on lines +306 to +311
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{row['username']}', '{row['password']}', '{row['email']}', '{row['role']}')
"""
cursor.execute(query)

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Injection in CSV Import

The import_users_from_csv method constructs SQL queries by directly concatenating values from a CSV file into the query string. If an attacker can control the contents of the CSV file, they could inject malicious SQL code that would be executed when the file is imported. This could lead to database compromise, data theft, or data destruction.

Suggested change
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{row['username']}', '{row['password']}', '{row['email']}', '{row['role']}')
"""
cursor.execute(query)
query = """
INSERT INTO users (username, password, email, role)
VALUES (?, ?, ?, ?)
"""
cursor.execute(query, (row['username'], row['password'], row['email'], row['role']))
Standards
  • CWE-89
  • A03:2021-Injection

@refacto-test
Copy link

refacto-test bot commented Aug 7, 2025

Multiple Critical Security Vulnerabilities in User Management and Data Analytics Code

👍 Well Done
Comprehensive Data Analytics Framework

The data analytics engine provides a well-structured framework with clear separation of concerns between data processing, analysis, and visualization components.

Proper Error Handling

The analytics engine includes proper exception handling and logging throughout the codebase, which helps prevent information leakage through unhandled exceptions.

Type Annotations

Both codebases make good use of type annotations, which improves code readability and helps prevent type-related bugs.

📌 Files Processed
  • data_analytics_engine.py
  • test_user_management.py
📝 Additional Comments
test_user_management.py (2)
Missing Input Validation in API Endpoints

The API endpoints lack input validation, allowing potentially malicious or malformed data to be passed directly to the underlying functions. Without validation, attackers can submit unexpected values that might bypass application logic or trigger errors that reveal sensitive information. This is particularly dangerous given the SQL injection vulnerabilities already present in the underlying functions.

def create_user_endpoint(username: str, password: str, email: str = None):
    """API endpoint for creating users"""
    # Validate input
    if not username or len(username) < 3:
        return {"error": "Username must be at least 3 characters long"}
    if not user_manager.validate_password(password):
        return {"error": "Password does not meet security requirements"}
    if email and not re.match(r'^[\w\.-]+@[\w\.-]+\.\w+$', email):
        return {"error": "Invalid email format"}
    # Hash password before storing
    hashed_password = user_manager.hash_password(password)
    return user_manager.create_user(username, hashed_password, email)

Standards:

  • CWE-20
  • A03:2021-Injection
Insecure Direct Object Reference in get_user_endpoint

The get_user_endpoint function doesn't verify that the requesting user has permission to access the requested user's data. This creates an Insecure Direct Object Reference (IDOR) vulnerability where any user can access any other user's information by simply changing the user_id parameter. Additionally, there's no authentication check to ensure the requester is logged in.

def get_user_endpoint(user_id: str, current_user_id: str):
    """API endpoint for getting user by ID"""
    # Verify authentication
    if not current_user_id:
        return {"error": "Authentication required"}, 401
    # Convert IDs to integers
    try:
        user_id_int = int(user_id)
        current_user_id_int = int(current_user_id)
    except ValueError:
        return {"error": "Invalid user ID format"}, 400
    # Get the current user's permissions
    permissions = user_manager.get_user_permissions(current_user_id_int)
    # Check authorization - users can only access their own data unless they're admins
    if user_id_int != current_user_id_int and 'admin' not in permissions:
        return {"error": "Unauthorized access"}, 403
    # If authorized, proceed with the request
    return user_manager.get_user_by_id(user_id_int)

Standards:

  • CWE-639
  • A01:2021-Broken Access Control

Comment on lines +191 to +196
def generate_session_token(self, user_id: int) -> str:
"""Generate session token"""
# SECURITY ISSUE 11: Weak token generation
import time
token = f"{user_id}_{int(time.time())}_{SECRET_KEY}"
return hashlib.md5(token.encode()).hexdigest()
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Weak Token Generation and Validation

The session token generation uses MD5, which is cryptographically broken, and combines it with predictable values (user ID and timestamp). The validation function is also flawed, as it only checks that the token contains an underscore and extracts the user ID without verifying the token's integrity. This allows attackers to forge session tokens for any user by creating a string that starts with the target user's ID followed by an underscore.

Suggested change
def generate_session_token(self, user_id: int) -> str:
"""Generate session token"""
# SECURITY ISSUE 11: Weak token generation
import time
token = f"{user_id}_{int(time.time())}_{SECRET_KEY}"
return hashlib.md5(token.encode()).hexdigest()
def generate_session_token(self, user_id: int) -> str:
"""Generate secure session token"""
import secrets
import hmac
# Generate a secure random token
random_token = secrets.token_hex(32)
# Create a timestamp for token expiration
timestamp = int(time.time())
# Combine user_id, timestamp, and random token
message = f"{user_id}:{timestamp}:{random_token}"
# Sign the message with the secret key using HMAC-SHA256
signature = hmac.new(SECRET_KEY.encode(), message.encode(), digestmod='sha256').hexdigest()
# Return the complete token
return f"{message}:{signature}"
Standards
  • CWE-330
  • A02:2021-Cryptographic Failures

Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 22

🧹 Nitpick comments (4)
test_user_management.py (1)

1-8: Remove unused imports

The following imports are unused and should be removed to keep the codebase clean:

  • os (line 3)
  • json (line 4)
  • timedelta from datetime (line 7)
  • re (line 8)
 import sqlite3
 import hashlib
-import os
-import json
 from typing import Dict, List, Optional
 import logging
-from datetime import datetime, timedelta
-import re
+from datetime import datetime
data_analytics_engine.py (3)

1-17: Remove unused imports

Several imports are unused and should be removed to keep the codebase clean.

 import pandas as pd
 import numpy as np
-import matplotlib.pyplot as plt
-import seaborn as sns
 import plotly.graph_objects as go
 import plotly.express as px
 from plotly.subplots import make_subplots
-import json
-import csv
 import sqlite3
 import logging
-from datetime import datetime, timedelta
-from typing import Dict, List, Optional, Tuple, Any, Union
+from datetime import datetime
+from typing import Dict, List
 from dataclasses import dataclass
-from abc import ABC, abstractmethod
 import warnings
 warnings.filterwarnings('ignore')

438-440: Remove unused variable assignments

These variables are assigned but never used. The methods already store results internally.

 # Perform analyses
-descriptive_stats = self.analyzer.descriptive_statistics(df)
-correlation_analysis = self.analyzer.correlation_analysis(df)
-outlier_analysis = self.analyzer.outlier_detection(df)
+self.analyzer.descriptive_statistics(df)
+self.analyzer.correlation_analysis(df)
+self.analyzer.outlier_detection(df)

468-492: Clean up temporary files in example usage

The example creates a sample_data.csv file that should be cleaned up after the demonstration.

 # Example usage and testing
 if __name__ == "__main__":
+    import os
+    
     # Create sample data for testing
     np.random.seed(42)
     sample_data = pd.DataFrame({
         'user_id': range(1000),
         'age': np.random.normal(35, 10, 1000),
         'income': np.random.lognormal(10, 0.5, 1000),
         'satisfaction_score': np.random.uniform(1, 10, 1000),
         'purchase_amount': np.random.exponential(100, 1000),
         'category': np.random.choice(['A', 'B', 'C'], 1000),
         'date': pd.date_range('2023-01-01', periods=1000, freq='D')
     })
     
     # Save sample data
     sample_data.to_csv('sample_data.csv', index=False)
     
     # Initialize and run analytics engine
     config = AnalyticsConfig(output_dir="analytics_output")
     engine = AnalyticsEngine(config)
     
     # Run analysis
     results = engine.run_full_analysis('sample_data.csv')
     print("Analytics completed!")
     print(f"Results: {results}")
+    
+    # Clean up temporary file
+    os.remove('sample_data.csv')
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between e184110 and 897b91a.

📒 Files selected for processing (2)
  • data_analytics_engine.py (1 hunks)
  • test_user_management.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.12.2)
test_user_management.py

3-3: os imported but unused

Remove unused import: os

(F401)


4-4: json imported but unused

Remove unused import: json

(F401)


7-7: datetime.timedelta imported but unused

Remove unused import: datetime.timedelta

(F401)


8-8: re imported but unused

Remove unused import: re

(F401)


27-37: f-string without any placeholders

Remove extraneous f prefix

(F541)


183-185: Return the condition directly

(SIM103)


207-207: Do not use bare except

(E722)

data_analytics_engine.py

3-3: matplotlib.pyplot imported but unused

Remove unused import: matplotlib.pyplot

(F401)


4-4: seaborn imported but unused

Remove unused import: seaborn

(F401)


8-8: json imported but unused

Remove unused import: json

(F401)


9-9: csv imported but unused

Remove unused import: csv

(F401)


12-12: datetime.timedelta imported but unused

Remove unused import: datetime.timedelta

(F401)


13-13: typing.Optional imported but unused

Remove unused import

(F401)


13-13: typing.Tuple imported but unused

Remove unused import

(F401)


13-13: typing.Any imported but unused

Remove unused import

(F401)


13-13: typing.Union imported but unused

Remove unused import

(F401)


15-15: abc.ABC imported but unused

Remove unused import

(F401)


15-15: abc.abstractmethod imported but unused

Remove unused import

(F401)


438-438: Local variable descriptive_stats is assigned to but never used

Remove assignment to unused variable descriptive_stats

(F841)


439-439: Local variable correlation_analysis is assigned to but never used

Remove assignment to unused variable correlation_analysis

(F841)


440-440: Local variable outlier_analysis is assigned to but never used

Remove assignment to unused variable outlier_analysis

(F841)

🔇 Additional comments (1)
data_analytics_engine.py (1)

140-146: Good practice: Division by zero prevention

The use of 1e-8 to prevent division by zero in ratio calculations is a good defensive programming practice.

Comment on lines +44 to +62
def load_data(self, source: str, data_type: str = "csv") -> pd.DataFrame:
"""Load data from various sources"""
try:
if data_type == "csv":
df = pd.read_csv(source)
elif data_type == "json":
df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
raise ValueError(f"Unsupported data type: {data_type}")

logger.info(f"Loaded {len(df)} rows from {source}")
return df
except Exception as e:
logger.error(f"Error loading data: {e}")
return pd.DataFrame()
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Make SQL table name configurable

The SQL query has a hardcoded table name "data" which limits flexibility.

-def load_data(self, source: str, data_type: str = "csv") -> pd.DataFrame:
+def load_data(self, source: str, data_type: str = "csv", table_name: str = "data") -> pd.DataFrame:
     """Load data from various sources"""
     try:
         if data_type == "csv":
             df = pd.read_csv(source)
         elif data_type == "json":
             df = pd.read_json(source)
         elif data_type == "sqlite":
             conn = sqlite3.connect(source)
-            df = pd.read_sql_query("SELECT * FROM data", conn)
+            # Use parameterized query to prevent SQL injection
+            df = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)
             conn.close()
         else:
             raise ValueError(f"Unsupported data type: {data_type}")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def load_data(self, source: str, data_type: str = "csv") -> pd.DataFrame:
"""Load data from various sources"""
try:
if data_type == "csv":
df = pd.read_csv(source)
elif data_type == "json":
df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
raise ValueError(f"Unsupported data type: {data_type}")
logger.info(f"Loaded {len(df)} rows from {source}")
return df
except Exception as e:
logger.error(f"Error loading data: {e}")
return pd.DataFrame()
def load_data(self, source: str, data_type: str = "csv", table_name: str = "data") -> pd.DataFrame:
"""Load data from various sources"""
try:
if data_type == "csv":
df = pd.read_csv(source)
elif data_type == "json":
df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
# Use parameterized query to prevent SQL injection
df = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)
conn.close()
else:
raise ValueError(f"Unsupported data type: {data_type}")
logger.info(f"Loaded {len(df)} rows from {source}")
return df
except Exception as e:
logger.error(f"Error loading data: {e}")
return pd.DataFrame()
🤖 Prompt for AI Agents
In data_analytics_engine.py around lines 44 to 62, the SQL query uses a
hardcoded table name "data" which reduces flexibility. Modify the load_data
method to accept an optional parameter for the SQL table name, defaulting to
"data" if not provided, and use this parameter in the SQL query instead of the
hardcoded name.

Comment on lines +64 to +96
def clean_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Clean and preprocess data"""
if df.empty:
return df

# Remove duplicates
df = df.drop_duplicates()

# Handle missing values
numeric_columns = df.select_dtypes(include=[np.number]).columns
categorical_columns = df.select_dtypes(include=['object']).columns

# Fill numeric missing values with median
for col in numeric_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].median(), inplace=True)

# Fill categorical missing values with mode
for col in categorical_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].mode()[0], inplace=True)

# Remove outliers using IQR method for numeric columns
for col in numeric_columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Make outlier removal optional in clean_data

Automatic outlier removal might not be appropriate for all datasets. This should be configurable.

-def clean_data(self, df: pd.DataFrame) -> pd.DataFrame:
+def clean_data(self, df: pd.DataFrame, remove_outliers: bool = True) -> pd.DataFrame:
     """Clean and preprocess data"""
     if df.empty:
         return df
         
     # Remove duplicates
     df = df.drop_duplicates()
     
     # Handle missing values
     numeric_columns = df.select_dtypes(include=[np.number]).columns
     categorical_columns = df.select_dtypes(include=['object']).columns
     
     # Fill numeric missing values with median
     for col in numeric_columns:
         if df[col].isnull().sum() > 0:
             df[col].fillna(df[col].median(), inplace=True)
     
     # Fill categorical missing values with mode
     for col in categorical_columns:
         if df[col].isnull().sum() > 0:
-            df[col].fillna(df[col].mode()[0], inplace=True)
+            mode_values = df[col].mode()
+            if not mode_values.empty:
+                df[col].fillna(mode_values[0], inplace=True)
     
-    # Remove outliers using IQR method for numeric columns
-    for col in numeric_columns:
-        Q1 = df[col].quantile(0.25)
-        Q3 = df[col].quantile(0.75)
-        IQR = Q3 - Q1
-        lower_bound = Q1 - 1.5 * IQR
-        upper_bound = Q3 + 1.5 * IQR
-        df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
+    # Optionally remove outliers using IQR method for numeric columns
+    if remove_outliers:
+        for col in numeric_columns:
+            Q1 = df[col].quantile(0.25)
+            Q3 = df[col].quantile(0.75)
+            IQR = Q3 - Q1
+            lower_bound = Q1 - 1.5 * IQR
+            upper_bound = Q3 + 1.5 * IQR
+            df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
     
     logger.info(f"Cleaned data: {len(df)} rows remaining")
     return df
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def clean_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Clean and preprocess data"""
if df.empty:
return df
# Remove duplicates
df = df.drop_duplicates()
# Handle missing values
numeric_columns = df.select_dtypes(include=[np.number]).columns
categorical_columns = df.select_dtypes(include=['object']).columns
# Fill numeric missing values with median
for col in numeric_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].median(), inplace=True)
# Fill categorical missing values with mode
for col in categorical_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].mode()[0], inplace=True)
# Remove outliers using IQR method for numeric columns
for col in numeric_columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
def clean_data(self, df: pd.DataFrame, remove_outliers: bool = True) -> pd.DataFrame:
"""Clean and preprocess data"""
if df.empty:
return df
# Remove duplicates
df = df.drop_duplicates()
# Handle missing values
numeric_columns = df.select_dtypes(include=[np.number]).columns
categorical_columns = df.select_dtypes(include=['object']).columns
# Fill numeric missing values with median
for col in numeric_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].median(), inplace=True)
# Fill categorical missing values with mode
for col in categorical_columns:
if df[col].isnull().sum() > 0:
mode_values = df[col].mode()
if not mode_values.empty:
df[col].fillna(mode_values[0], inplace=True)
# Optionally remove outliers using IQR method for numeric columns
if remove_outliers:
for col in numeric_columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
🤖 Prompt for AI Agents
In data_analytics_engine.py around lines 64 to 96, the clean_data method
currently always removes outliers using the IQR method, which may not be
suitable for all datasets. Modify the method to accept an optional parameter,
e.g., remove_outliers (defaulting to True or False), and conditionally perform
the outlier removal step only if this parameter is set to True. This makes
outlier removal configurable when calling clean_data.

Comment on lines +336 to +343
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Ensure output directory exists before exporting charts

The export_chart method might fail if the output directory doesn't exist.

 def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
     """Export chart to various formats"""
+    import os
+    os.makedirs(self.config.output_dir, exist_ok=True)
+    
     if format == "html":
         fig.write_html(f"{self.config.output_dir}/{filename}.html")
     elif format == "png":
         fig.write_image(f"{self.config.output_dir}/{filename}.png")
     elif format == "pdf":
         fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
import os
os.makedirs(self.config.output_dir, exist_ok=True)
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
🤖 Prompt for AI Agents
In data_analytics_engine.py around lines 336 to 343, the export_chart method
does not check if the output directory exists before saving files, which can
cause failures. Modify the method to verify the existence of
self.config.output_dir and create it if it does not exist before writing the
chart files.

Comment on lines +369 to +377
if 'descriptive_stats' in analysis_results:
report.append("## Statistical Summary")
stats = analysis_results['descriptive_stats']
for col in df.select_dtypes(include=[np.number]).columns:
report.append(f"### {col}")
report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
report.append(f"- Std Dev: {stats['std'].get(col, 'N/A'):.2f}")
report.append("")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Fix potential TypeError in statistical summary formatting

Using 'N/A' as default for numeric values will cause TypeError when formatting with :.2f.

 # Statistical summary
 if 'descriptive_stats' in analysis_results:
     report.append("## Statistical Summary")
     stats = analysis_results['descriptive_stats']
     for col in df.select_dtypes(include=[np.number]).columns:
         report.append(f"### {col}")
-        report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
-        report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
-        report.append(f"- Std Dev: {stats['std'].get(col, 'N/A'):.2f}")
+        mean_val = stats['mean'].get(col)
+        median_val = stats['median'].get(col)
+        std_val = stats['std'].get(col)
+        
+        report.append(f"- Mean: {mean_val:.2f}" if mean_val is not None else "- Mean: N/A")
+        report.append(f"- Median: {median_val:.2f}" if median_val is not None else "- Median: N/A")
+        report.append(f"- Std Dev: {std_val:.2f}" if std_val is not None else "- Std Dev: N/A")
         report.append("")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
if 'descriptive_stats' in analysis_results:
report.append("## Statistical Summary")
stats = analysis_results['descriptive_stats']
for col in df.select_dtypes(include=[np.number]).columns:
report.append(f"### {col}")
report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
report.append(f"- Std Dev: {stats['std'].get(col, 'N/A'):.2f}")
report.append("")
if 'descriptive_stats' in analysis_results:
report.append("## Statistical Summary")
stats = analysis_results['descriptive_stats']
for col in df.select_dtypes(include=[np.number]).columns:
report.append(f"### {col}")
mean_val = stats['mean'].get(col)
median_val = stats['median'].get(col)
std_val = stats['std'].get(col)
report.append(f"- Mean: {mean_val:.2f}" if mean_val is not None else "- Mean: N/A")
report.append(f"- Median: {median_val:.2f}" if median_val is not None else "- Median: N/A")
report.append(f"- Std Dev: {std_val:.2f}" if std_val is not None else "- Std Dev: N/A")
report.append("")
🤖 Prompt for AI Agents
In data_analytics_engine.py around lines 369 to 377, the code uses 'N/A' as a
default value for numeric statistics but then tries to format it with :.2f,
causing a TypeError. To fix this, check if the statistic value is numeric before
formatting; if it is not, append 'N/A' directly without formatting. This ensures
no formatting errors occur when the statistic is missing.

Comment on lines +10 to +14
# SECURITY ISSUE 1: Hardcoded database credentials and connection string
DATABASE_URL = "sqlite:///users.db"
ADMIN_USERNAME = "admin"
ADMIN_PASSWORD = "admin123" # SECURITY ISSUE: Hardcoded weak password
SECRET_KEY = "my-super-secret-key-123" # SECURITY ISSUE: Hardcoded secret key
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Critical: Remove hardcoded credentials and secrets

Hardcoded credentials and secret keys pose severe security risks. These values should be stored in environment variables or a secure configuration system.

-# SECURITY ISSUE 1: Hardcoded database credentials and connection string
-DATABASE_URL = "sqlite:///users.db"
-ADMIN_USERNAME = "admin"
-ADMIN_PASSWORD = "admin123"  # SECURITY ISSUE: Hardcoded weak password
-SECRET_KEY = "my-super-secret-key-123"  # SECURITY ISSUE: Hardcoded secret key
+import os
+from dotenv import load_dotenv
+
+load_dotenv()
+
+DATABASE_URL = os.getenv("DATABASE_URL", "sqlite:///users.db")
+ADMIN_USERNAME = os.getenv("ADMIN_USERNAME")
+ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
+SECRET_KEY = os.getenv("SECRET_KEY")
+
+if not all([ADMIN_USERNAME, ADMIN_PASSWORD, SECRET_KEY]):
+    raise ValueError("Required environment variables are not set")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
# SECURITY ISSUE 1: Hardcoded database credentials and connection string
DATABASE_URL = "sqlite:///users.db"
ADMIN_USERNAME = "admin"
ADMIN_PASSWORD = "admin123" # SECURITY ISSUE: Hardcoded weak password
SECRET_KEY = "my-super-secret-key-123" # SECURITY ISSUE: Hardcoded secret key
import os
from dotenv import load_dotenv
load_dotenv()
DATABASE_URL = os.getenv("DATABASE_URL", "sqlite:///users.db")
ADMIN_USERNAME = os.getenv("ADMIN_USERNAME")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
SECRET_KEY = os.getenv("SECRET_KEY")
if not all([ADMIN_USERNAME, ADMIN_PASSWORD, SECRET_KEY]):
raise ValueError("Required environment variables are not set")
🤖 Prompt for AI Agents
In test_user_management.py around lines 10 to 14, hardcoded database
credentials, admin username and password, and secret key are present, which is a
critical security risk. Remove these hardcoded values and instead read them from
environment variables or a secure configuration system. Update the code to fetch
DATABASE_URL, ADMIN_USERNAME, ADMIN_PASSWORD, and SECRET_KEY from environment
variables using a method like os.getenv or a configuration library, ensuring no
sensitive information is stored directly in the source code.

Comment on lines +268 to +293
def export_user_data(self, user_id: int) -> Dict:
"""Export user data"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()

# SECURITY ISSUE 16: SQL injection in data export
query = f"SELECT * FROM users WHERE id = {user_id}"
cursor.execute(query)
user = cursor.fetchone()
conn.close()

if user:
return {
'id': user[0],
'username': user[1],
'password': user[2], # SECURITY ISSUE 17: Exposing password
'email': user[3],
'role': user[4],
'is_active': user[5],
'created_at': user[6]
}
return {}
except Exception as e:
logging.error(f"Error exporting user data: {e}")
return {}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Critical: Password exposure and SQL injection in export_user_data

This method exposes passwords and has SQL injection vulnerability.

 def export_user_data(self, user_id: int) -> Dict:
     """Export user data"""
     try:
         conn = sqlite3.connect(self.db_path)
         cursor = conn.cursor()
         
-        # SECURITY ISSUE 16: SQL injection in data export
-        query = f"SELECT * FROM users WHERE id = {user_id}"
-        cursor.execute(query)
+        cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))
         user = cursor.fetchone()
         conn.close()
         
         if user:
             return {
                 'id': user[0],
                 'username': user[1],
-                'password': user[2],  # SECURITY ISSUE 17: Exposing password
+                # Never expose passwords, even hashed ones
                 'email': user[3],
                 'role': user[4],
                 'is_active': user[5],
                 'created_at': user[6]
             }
         return {}
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def export_user_data(self, user_id: int) -> Dict:
"""Export user data"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# SECURITY ISSUE 16: SQL injection in data export
query = f"SELECT * FROM users WHERE id = {user_id}"
cursor.execute(query)
user = cursor.fetchone()
conn.close()
if user:
return {
'id': user[0],
'username': user[1],
'password': user[2], # SECURITY ISSUE 17: Exposing password
'email': user[3],
'role': user[4],
'is_active': user[5],
'created_at': user[6]
}
return {}
except Exception as e:
logging.error(f"Error exporting user data: {e}")
return {}
def export_user_data(self, user_id: int) -> Dict:
"""Export user data"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))
user = cursor.fetchone()
conn.close()
if user:
return {
'id': user[0],
'username': user[1],
# Never expose passwords, even hashed ones
'email': user[3],
'role': user[4],
'is_active': user[5],
'created_at': user[6]
}
return {}
except Exception as e:
logging.error(f"Error exporting user data: {e}")
return {}
🤖 Prompt for AI Agents
In test_user_management.py around lines 268 to 293, the export_user_data method
has two critical issues: it constructs the SQL query using string interpolation,
causing SQL injection risk, and it returns the user's password in the output,
exposing sensitive data. Fix this by using parameterized queries with
placeholders to safely pass user_id to the SQL statement, and remove the
password field from the returned dictionary to avoid exposing it.

Comment on lines +295 to +317
def import_users_from_csv(self, csv_file_path: str) -> bool:
"""Import users from CSV file"""
try:
import csv
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()

with open(csv_file_path, 'r') as file:
reader = csv.DictReader(file)
for row in reader:
# SECURITY ISSUE 18: SQL injection in CSV import
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{row['username']}', '{row['password']}', '{row['email']}', '{row['role']}')
"""
cursor.execute(query)

conn.commit()
conn.close()
return True
except Exception as e:
logging.error(f"Error importing users: {e}")
return False
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Critical: SQL injection in import_users_from_csv

CSV import has SQL injection vulnerability and doesn't hash passwords.

 def import_users_from_csv(self, csv_file_path: str) -> bool:
     """Import users from CSV file"""
     try:
         import csv
         conn = sqlite3.connect(self.db_path)
         cursor = conn.cursor()
         
         with open(csv_file_path, 'r') as file:
             reader = csv.DictReader(file)
             for row in reader:
-                # SECURITY ISSUE 18: SQL injection in CSV import
-                query = f"""
-                    INSERT INTO users (username, password, email, role)
-                    VALUES ('{row['username']}', '{row['password']}', '{row['email']}', '{row['role']}')
-                """
-                cursor.execute(query)
+                # Validate and hash password
+                if not self.validate_password(row.get('password', '')):
+                    logging.warning(f"Skipping user {row.get('username')} - weak password")
+                    continue
+                
+                hashed_password = self.hash_password(row['password'])
+                
+                # Use parameterized query
+                cursor.execute("""
+                    INSERT OR IGNORE INTO users (username, password, email, role)
+                    VALUES (?, ?, ?, ?)
+                """, (row['username'], hashed_password, row.get('email'), row.get('role', 'user')))
         
         conn.commit()
         conn.close()
         return True

Committable suggestion skipped: line range outside the PR's diff.

🤖 Prompt for AI Agents
In test_user_management.py around lines 295 to 317, the import_users_from_csv
method constructs SQL queries by directly embedding CSV values, causing SQL
injection risks and storing passwords in plain text. To fix this, replace the
string interpolation with parameterized queries using placeholders and pass the
CSV values as parameters to cursor.execute. Additionally, hash the passwords
before inserting them into the database to enhance security.

Comment on lines +319 to +345
def get_system_stats(self) -> Dict:
"""Get system statistics"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()

# SECURITY ISSUE 19: SQL injection in stats query
query = "SELECT COUNT(*) FROM users"
cursor.execute(query)
total_users = cursor.fetchone()[0]

query = "SELECT COUNT(*) FROM users WHERE role = 'admin'"
cursor.execute(query)
admin_users = cursor.fetchone()[0]

conn.close()

return {
'total_users': total_users,
'admin_users': admin_users,
'regular_users': total_users - admin_users,
'database_path': self.db_path, # SECURITY ISSUE 20: Exposing internal paths
'secret_key': SECRET_KEY # SECURITY ISSUE 21: Exposing secret key
}
except Exception as e:
logging.error(f"Error getting stats: {e}")
return {}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Critical: Exposure of sensitive information in get_system_stats

This method exposes the database path and secret key, which are sensitive internal details.

 def get_system_stats(self) -> Dict:
     """Get system statistics"""
     try:
         conn = sqlite3.connect(self.db_path)
         cursor = conn.cursor()
         
-        # SECURITY ISSUE 19: SQL injection in stats query
         query = "SELECT COUNT(*) FROM users"
         cursor.execute(query)
         total_users = cursor.fetchone()[0]
         
         query = "SELECT COUNT(*) FROM users WHERE role = 'admin'"
         cursor.execute(query)
         admin_users = cursor.fetchone()[0]
         
         conn.close()
         
         return {
             'total_users': total_users,
             'admin_users': admin_users,
             'regular_users': total_users - admin_users,
-            'database_path': self.db_path,  # SECURITY ISSUE 20: Exposing internal paths
-            'secret_key': SECRET_KEY  # SECURITY ISSUE 21: Exposing secret key
+            # Never expose internal paths or secrets
         }
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def get_system_stats(self) -> Dict:
"""Get system statistics"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# SECURITY ISSUE 19: SQL injection in stats query
query = "SELECT COUNT(*) FROM users"
cursor.execute(query)
total_users = cursor.fetchone()[0]
query = "SELECT COUNT(*) FROM users WHERE role = 'admin'"
cursor.execute(query)
admin_users = cursor.fetchone()[0]
conn.close()
return {
'total_users': total_users,
'admin_users': admin_users,
'regular_users': total_users - admin_users,
'database_path': self.db_path, # SECURITY ISSUE 20: Exposing internal paths
'secret_key': SECRET_KEY # SECURITY ISSUE 21: Exposing secret key
}
except Exception as e:
logging.error(f"Error getting stats: {e}")
return {}
def get_system_stats(self) -> Dict:
"""Get system statistics"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
query = "SELECT COUNT(*) FROM users"
cursor.execute(query)
total_users = cursor.fetchone()[0]
query = "SELECT COUNT(*) FROM users WHERE role = 'admin'"
cursor.execute(query)
admin_users = cursor.fetchone()[0]
conn.close()
return {
'total_users': total_users,
'admin_users': admin_users,
'regular_users': total_users - admin_users,
# Never expose internal paths or secrets
}
except Exception as e:
logging.error(f"Error getting stats: {e}")
return {}
🤖 Prompt for AI Agents
In test_user_management.py around lines 319 to 345, the get_system_stats method
exposes sensitive information by returning the database path and secret key. To
fix this, remove 'database_path' and 'secret_key' from the returned dictionary
so that these internal details are not exposed outside the method.

Comment on lines +350 to +368
def create_user_endpoint(username: str, password: str, email: str = None):
"""API endpoint for creating users"""
# SECURITY ISSUE 22: No input validation
return user_manager.create_user(username, password, email)

def login_endpoint(username: str, password: str):
"""API endpoint for user login"""
# SECURITY ISSUE 23: No input sanitization
return user_manager.authenticate_user(username, password)

def get_user_endpoint(user_id: str):
"""API endpoint for getting user by ID"""
# SECURITY ISSUE 24: No type validation
return user_manager.get_user_by_id(int(user_id))

def search_users_endpoint(search_term: str):
"""API endpoint for searching users"""
# SECURITY ISSUE 25: No input sanitization
return user_manager.search_users(search_term)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add input validation to API endpoints

All API endpoints lack input validation and sanitization, making them vulnerable to various attacks.

+import re
+from typing import Union
+
 def create_user_endpoint(username: str, password: str, email: str = None):
     """API endpoint for creating users"""
-    # SECURITY ISSUE 22: No input validation
+    # Validate username (alphanumeric and underscore only)
+    if not re.match(r'^[a-zA-Z0-9_]{3,20}$', username):
+        return {'error': 'Invalid username format'}
+    
+    # Validate email if provided
+    if email and not re.match(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$', email):
+        return {'error': 'Invalid email format'}
+    
     return user_manager.create_user(username, password, email)
 
 def login_endpoint(username: str, password: str):
     """API endpoint for user login"""
-    # SECURITY ISSUE 23: No input sanitization
+    # Add rate limiting here to prevent brute force attacks
+    # Validate input length to prevent DoS
+    if len(username) > 100 or len(password) > 100:
+        return {'error': 'Input too long'}
+    
     return user_manager.authenticate_user(username, password)
 
-def get_user_endpoint(user_id: str):
+def get_user_endpoint(user_id: Union[str, int]):
     """API endpoint for getting user by ID"""
-    # SECURITY ISSUE 24: No type validation
-    return user_manager.get_user_by_id(int(user_id))
+    # Validate user_id is a positive integer
+    try:
+        user_id = int(user_id)
+        if user_id <= 0:
+            return {'error': 'Invalid user ID'}
+    except (ValueError, TypeError):
+        return {'error': 'User ID must be a number'}
+    
+    return user_manager.get_user_by_id(user_id)
 
 def search_users_endpoint(search_term: str):
     """API endpoint for searching users"""
-    # SECURITY ISSUE 25: No input sanitization
+    # Limit search term length to prevent DoS
+    if len(search_term) > 50:
+        return {'error': 'Search term too long'}
+    
+    # Remove special characters that might be used for injection
+    search_term = re.sub(r'[^\w\[email protected]]', '', search_term)
+    
     return user_manager.search_users(search_term)
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def create_user_endpoint(username: str, password: str, email: str = None):
"""API endpoint for creating users"""
# SECURITY ISSUE 22: No input validation
return user_manager.create_user(username, password, email)
def login_endpoint(username: str, password: str):
"""API endpoint for user login"""
# SECURITY ISSUE 23: No input sanitization
return user_manager.authenticate_user(username, password)
def get_user_endpoint(user_id: str):
"""API endpoint for getting user by ID"""
# SECURITY ISSUE 24: No type validation
return user_manager.get_user_by_id(int(user_id))
def search_users_endpoint(search_term: str):
"""API endpoint for searching users"""
# SECURITY ISSUE 25: No input sanitization
return user_manager.search_users(search_term)
import re
from typing import Union
def create_user_endpoint(username: str, password: str, email: str = None):
"""API endpoint for creating users"""
# Validate username (alphanumeric and underscore only)
if not re.match(r'^[a-zA-Z0-9_]{3,20}$', username):
return {'error': 'Invalid username format'}
# Validate email if provided
if email and not re.match(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$', email):
return {'error': 'Invalid email format'}
return user_manager.create_user(username, password, email)
def login_endpoint(username: str, password: str):
"""API endpoint for user login"""
# Add rate limiting here to prevent brute force attacks
# Validate input length to prevent DoS
if len(username) > 100 or len(password) > 100:
return {'error': 'Input too long'}
return user_manager.authenticate_user(username, password)
def get_user_endpoint(user_id: Union[str, int]):
"""API endpoint for getting user by ID"""
# Validate user_id is a positive integer
try:
user_id = int(user_id)
if user_id <= 0:
return {'error': 'Invalid user ID'}
except (ValueError, TypeError):
return {'error': 'User ID must be a number'}
return user_manager.get_user_by_id(user_id)
def search_users_endpoint(search_term: str):
"""API endpoint for searching users"""
# Limit search term length to prevent DoS
if len(search_term) > 50:
return {'error': 'Search term too long'}
# Remove special characters that might be used for injection
search_term = re.sub(r'[^\w\[email protected]]', '', search_term)
return user_manager.search_users(search_term)
🤖 Prompt for AI Agents
In test_user_management.py around lines 350 to 368, the API endpoints lack input
validation and sanitization, exposing security risks. Add proper input
validation for all parameters, ensuring usernames, passwords, emails, user IDs,
and search terms conform to expected formats and types. Implement sanitization
to prevent injection attacks by cleaning inputs before passing them to
user_manager methods.

Comment on lines +371 to +391
if __name__ == "__main__":
# Create some test users
user_manager.create_user("john_doe", "password123", "[email protected]")
user_manager.create_user("jane_smith", "password456", "[email protected]")
user_manager.create_user("bob_wilson", "password789", "[email protected]")

# Test authentication
user = user_manager.authenticate_user("john_doe", "password123")
print(f"Authenticated user: {user}")

# Test search
users = user_manager.search_users("john")
print(f"Search results: {users}")

# Test permissions
permissions = user_manager.get_user_permissions(1)
print(f"User permissions: {permissions}")

# Test system stats
stats = user_manager.get_system_stats()
print(f"System stats: {stats}") No newline at end of file
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Improve example usage with better practices

The example usage should demonstrate secure practices, not perpetuate bad patterns.

 # Example usage
 if __name__ == "__main__":
-    # Create some test users
-    user_manager.create_user("john_doe", "password123", "[email protected]")
-    user_manager.create_user("jane_smith", "password456", "[email protected]")
-    user_manager.create_user("bob_wilson", "password789", "[email protected]")
+    # Example: Create users with strong passwords
+    # In production, passwords should come from user input, not hardcoded
+    import getpass
+    
+    # Example of secure password input
+    # password = getpass.getpass("Enter password: ")
+    
+    # For demonstration only - use strong passwords
+    user_manager.create_user("john_doe", "J0hn!D0e@2024#Secure", "[email protected]")
     
     # Test authentication
-    user = user_manager.authenticate_user("john_doe", "password123")
-    print(f"Authenticated user: {user}")
+    user = user_manager.authenticate_user("john_doe", "J0hn!D0e@2024#Secure")
+    if user:
+        print(f"Authentication successful for user ID: {user['id']}")
+    else:
+        print("Authentication failed")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
if __name__ == "__main__":
# Create some test users
user_manager.create_user("john_doe", "password123", "[email protected]")
user_manager.create_user("jane_smith", "password456", "[email protected]")
user_manager.create_user("bob_wilson", "password789", "[email protected]")
# Test authentication
user = user_manager.authenticate_user("john_doe", "password123")
print(f"Authenticated user: {user}")
# Test search
users = user_manager.search_users("john")
print(f"Search results: {users}")
# Test permissions
permissions = user_manager.get_user_permissions(1)
print(f"User permissions: {permissions}")
# Test system stats
stats = user_manager.get_system_stats()
print(f"System stats: {stats}")
# Example usage
if __name__ == "__main__":
# Example: Create users with strong passwords
# In production, passwords should come from user input, not hardcoded
import getpass
# Example of secure password input
# password = getpass.getpass("Enter password: ")
# For demonstration only - use strong passwords
user_manager.create_user("john_doe", "J0hn!D0e@2024#Secure", "[email protected]")
# Test authentication
user = user_manager.authenticate_user("john_doe", "J0hn!D0e@2024#Secure")
if user:
print(f"Authentication successful for user ID: {user['id']}")
else:
print("Authentication failed")
# Test search
users = user_manager.search_users("john")
print(f"Search results: {users}")
# Test permissions
permissions = user_manager.get_user_permissions(1)
print(f"User permissions: {permissions}")
# Test system stats
stats = user_manager.get_system_stats()
print(f"System stats: {stats}")
🤖 Prompt for AI Agents
In test_user_management.py around lines 371 to 391, the example usage shows
creating users with plaintext passwords and printing sensitive information
directly. Update the example to avoid hardcoding passwords in plaintext, use
environment variables or secure input methods for passwords, and avoid printing
sensitive user details or authentication tokens. Instead, demonstrate secure
handling by showing success/failure messages without exposing credentials or
sensitive data.

@shivaji-dev1
Copy link

/refacto-test

@refacto-test
Copy link

refacto-test bot commented Aug 15, 2025

Refacto is reviewing this PR. Please wait for the review comments to be posted.

@refacto-test
Copy link

refacto-test bot commented Aug 15, 2025

Code Review: User Management Security

👍 Well Done
Modular Analytics Architecture

Clean separation of concerns with well-defined components for data processing, analysis, and visualization.

Error Logging Implementation

Consistent error logging helps with troubleshooting reliability issues across the application.

📌 Files Processed
  • test_user_management.py
  • data_analytics_engine.py
📝 Additional Comments
test_user_management.py (4)
Password Exposure Risk

User passwords are included in exported user data. Attackers gaining access to exported data can obtain password hashes or plaintext passwords, compromising user accounts through offline cracking.

def export_user_data(self, user_id: int) -> Dict:
    """Export user data"""
    try:
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        query = "SELECT id, username, email, role, is_active, created_at FROM users WHERE id = ?"
        cursor.execute(query, (user_id,))
        user = cursor.fetchone()
        conn.close()
        
        if user:
            return {
                'id': user[0],
                'username': user[1],
                'email': user[2],
                'role': user[3],
                'is_active': user[4],
                'created_at': user[5]
            }
        return {}
    except Exception as e:
        logging.error(f"Error exporting user data: {e}")
        return {}

Standards:

  • CWE-359
  • OWASP-A02
Weak Session Management

Session tokens use weak MD5 hashing and predictable components. Attackers can forge session tokens through MD5 collisions or brute force, enabling session hijacking and unauthorized account access.

import secrets
import hashlib
import time

def generate_session_token(self, user_id: int) -> str:
    """Generate secure session token"""
    # Generate a secure random token
    random_bytes = secrets.token_bytes(32)
    timestamp = int(time.time())
    # Combine user ID, timestamp, random bytes and secret key
    message = f"{user_id}_{timestamp}_{random_bytes.hex()}_{SECRET_KEY}"
    # Use SHA-256 instead of MD5
    return hashlib.sha256(message.encode()).hexdigest()

Standards:

  • CWE-331
  • OWASP-A02
Single Responsibility Violation

UserManager class handles authentication, database operations, session management, and system statistics. This violates SRP by combining multiple responsibilities, making maintenance difficult when any single aspect changes.

class DatabaseManager:
    def __init__(self, db_path="users.db"):
        self.db_path = db_path
        self.init_database()
    
    def init_database(self):
        # Database initialization logic
        pass

class AuthenticationService:
    def __init__(self, db_manager):
        self.db_manager = db_manager
    
    def authenticate_user(self, username, password):
        # Authentication logic
        pass
    
    def hash_password(self, password):
        # Password hashing logic
        pass

class UserService:
    def __init__(self, db_manager):
        self.db_manager = db_manager
    
    def create_user(self, username, password, email=None, role="user"):
        # User creation logic
        pass
    
    def get_user_by_id(self, user_id):
        # User retrieval logic
        pass

Standards:

  • SOLID-SRP
  • Clean-Code-Class-Organization
Missing Connection Pooling

Database connections are created for each operation without pooling. Under load, this creates connection overhead and resource exhaustion, potentially causing timeouts and performance degradation.

import sqlite3
from contextlib import contextmanager

class ConnectionPool:
    def __init__(self, db_path, max_connections=5):
        self.db_path = db_path
        self.max_connections = max_connections
        self.connections = []

    @contextmanager
    def get_connection(self):
        if self.connections:
            connection = self.connections.pop()
        else:
            connection = sqlite3.connect(self.db_path)
        try:
            yield connection
        finally:
            if len(self.connections) < self.max_connections:
                self.connections.append(connection)
            else:
                connection.close()

Standards:

  • ISO-IEC-25010-Performance-Resource-Utilization
  • Netflix-Connection-Pooling
data_analytics_engine.py (1)
Error Handling Inconsistency

Inconsistent error handling pattern swallows exceptions and returns empty DataFrames. This creates maintenance challenges by hiding errors and making debugging difficult when issues occur.

class DataLoadError(Exception):
    """Exception raised for errors in data loading process"""
    pass

def load_data(self, source: str, data_type: str = "csv") -> pd.DataFrame:
    """Load data from various sources"""
    try:
        if data_type == "csv":
            df = pd.read_csv(source)
        elif data_type == "json":
            df = pd.read_json(source)
        elif data_type == "sqlite":
            conn = sqlite3.connect(source)
            df = pd.read_sql_query("SELECT * FROM data", conn)
            conn.close()
        else:
            raise ValueError(f"Unsupported data type: {data_type}")
        
        logger.info(f"Loaded {len(df)} rows from {source}")
        return df
    except Exception as e:
        logger.error(f"Error loading data: {e}")
        raise DataLoadError(f"Failed to load {data_type} data from {source}: {e}")

Standards:

  • Clean-Code-Error-Handling
  • Design-Pattern-Exception

Comment on lines +55 to +58
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{username}', '{password}', '{email}', '{role}')
"""
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Injection Vulnerabilities

String interpolation in SQL queries enables SQL injection attacks. Malicious input could execute arbitrary SQL commands, causing data corruption or unauthorized access.

Suggested change
query = f"""
INSERT INTO users (username, password, email, role)
VALUES ('{username}', '{password}', '{email}', '{role}')
"""
query = """
INSERT INTO users (username, password, email, role)
VALUES (?, ?, ?, ?)
"""
cursor.execute(query, (username, password, email, role))
Standards
  • OWASP-A03
  • CWE-89

Comment on lines +188 to +190
"""Hash password using MD5 (SECURITY ISSUE 10: Weak hashing)"""
return hashlib.md5(password.encode()).hexdigest()

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Weak Password Hashing

MD5 is cryptographically broken and unsuitable for password hashing. It lacks salt and is vulnerable to rainbow table attacks, compromising account security.

Suggested change
"""Hash password using MD5 (SECURITY ISSUE 10: Weak hashing)"""
return hashlib.md5(password.encode()).hexdigest()
def hash_password(self, password: str) -> str:
"""Hash password using strong algorithm with salt"""
import bcrypt
salt = bcrypt.gensalt()
return bcrypt.hashpw(password.encode(), salt).decode('utf-8')
Standards
  • OWASP-A02
  • CWE-328

Comment on lines +261 to +263
command = f"cp {self.db_path} {backup_path}"
subprocess.run(command, shell=True, check=True)
return True
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Command Injection Risk

Direct string interpolation in shell commands enables command injection. Malicious input in backup_path could execute arbitrary system commands, compromising system integrity.

Suggested change
command = f"cp {self.db_path} {backup_path}"
subprocess.run(command, shell=True, check=True)
return True
import subprocess
import shutil
# Safer approach using shutil
shutil.copy2(self.db_path, backup_path)
# Alternative using subprocess without shell=True
# subprocess.run(["cp", self.db_path, backup_path], check=True)
Standards
  • OWASP-A03
  • CWE-78

Comment on lines +10 to +14
# SECURITY ISSUE 1: Hardcoded database credentials and connection string
DATABASE_URL = "sqlite:///users.db"
ADMIN_USERNAME = "admin"
ADMIN_PASSWORD = "admin123" # SECURITY ISSUE: Hardcoded weak password
SECRET_KEY = "my-super-secret-key-123" # SECURITY ISSUE: Hardcoded secret key
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hardcoded Credentials

Hardcoded credentials in source code pose security risk. Credentials in version control are accessible to anyone with repository access, compromising system security.

Suggested change
# SECURITY ISSUE 1: Hardcoded database credentials and connection string
DATABASE_URL = "sqlite:///users.db"
ADMIN_USERNAME = "admin"
ADMIN_PASSWORD = "admin123" # SECURITY ISSUE: Hardcoded weak password
SECRET_KEY = "my-super-secret-key-123" # SECURITY ISSUE: Hardcoded secret key
import os
# Load from environment variables with defaults for development only
DATABASE_URL = os.environ.get("DATABASE_URL", "sqlite:///users.db")
ADMIN_USERNAME = os.environ.get("ADMIN_USERNAME", "admin")
ADMIN_PASSWORD = os.environ.get("ADMIN_PASSWORD", "change-me-in-production")
SECRET_KEY = os.environ.get("SECRET_KEY", "generate-random-key-in-production")
Standards
  • OWASP-A07
  • CWE-798

Comment on lines +180 to +185
def validate_password(self, password: str) -> bool:
"""Validate password strength"""
# SECURITY ISSUE 9: Weak password validation
if len(password) >= 6: # Too weak minimum length
return True
return False
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Weak Password Validation

Password validation only checks length ≥ 6, allowing weak passwords. Missing complexity requirements (uppercase, lowercase, numbers, symbols) enables brute force attacks and compromises account security.

Suggested change
def validate_password(self, password: str) -> bool:
"""Validate password strength"""
# SECURITY ISSUE 9: Weak password validation
if len(password) >= 6: # Too weak minimum length
return True
return False
def validate_password(self, password: str) -> bool:
"""Validate password strength with comprehensive rules"""
if len(password) < 12:
return False
if not re.search(r'[A-Z]', password):
return False
if not re.search(r'[a-z]', password):
return False
if not re.search(r'[0-9]', password):
return False
if not re.search(r'[!@#$%^&*(),.?":{}|<>]', password):
return False
return True
Standards
  • OWASP-A07
  • CWE-521

Comment on lines +52 to +54
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Resource Leak Risk

Database connection not closed in exception paths. If read_sql_query fails, connection remains open causing resource leaks and potential connection pool exhaustion.

Suggested change
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
with sqlite3.connect(source) as conn:
df = pd.read_sql_query("SELECT * FROM data", conn)
Standards
  • ISO-IEC-25010-Reliability-Maturity
  • DbC-Resource-Management

Comment on lines +196 to +208
def outlier_detection(self, df: pd.DataFrame, method: str = "iqr") -> Dict:
"""Detect outliers using various methods"""
outliers = {}
numeric_columns = df.select_dtypes(include=[np.number]).columns

for col in numeric_columns:
if method == "iqr":
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outlier_indices = df[(df[col] < lower_bound) | (df[col] > upper_bound)].index
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

O(n²) Outlier Detection

Outlier detection uses inefficient filtering for each column separately. With large datasets, this creates O(n²) complexity as each column requires full dataframe filtering, causing significant performance degradation.

Suggested change
def outlier_detection(self, df: pd.DataFrame, method: str = "iqr") -> Dict:
"""Detect outliers using various methods"""
outliers = {}
numeric_columns = df.select_dtypes(include=[np.number]).columns
for col in numeric_columns:
if method == "iqr":
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outlier_indices = df[(df[col] < lower_bound) | (df[col] > upper_bound)].index
def outlier_detection(self, df: pd.DataFrame, method: str = "iqr") -> Dict:
"""Detect outliers using various methods"""
outliers = {}
numeric_columns = df.select_dtypes(include=[np.number]).columns
for col in numeric_columns:
if method == "iqr":
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
mask = (df[col] < lower_bound) | (df[col] > upper_bound)
outlier_indices = df.index[mask]
outliers[col] = {
'count': len(outlier_indices),
'percentage': len(outlier_indices) / len(df) * 100,
'indices': outlier_indices.tolist()
}
self.analysis_results['outlier_detection'] = outliers
return outliers
Standards
  • ISO-IEC-25010-Performance-Time-Behaviour
  • Algorithm-Opt-Vectorization

Comment on lines +128 to +145
def feature_engineering(self, df: pd.DataFrame) -> pd.DataFrame:
"""Create new features from existing data"""
# Date features if datetime columns exist
datetime_columns = df.select_dtypes(include=['datetime64']).columns
for col in datetime_columns:
df[f"{col}_year"] = df[col].dt.year
df[f"{col}_month"] = df[col].dt.month
df[f"{col}_day"] = df[col].dt.day
df[f"{col}_dayofweek"] = df[col].dt.dayofweek
df[f"{col}_quarter"] = df[col].dt.quarter

# Interaction features for numeric columns
numeric_columns = df.select_dtypes(include=[np.number]).columns
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Inefficient Feature Engineering

Feature engineering creates O(n²) complexity with nested loops over numeric columns. For datasets with many numeric columns, this generates excessive features, causing memory spikes and computation bottlenecks.

Suggested change
def feature_engineering(self, df: pd.DataFrame) -> pd.DataFrame:
"""Create new features from existing data"""
# Date features if datetime columns exist
datetime_columns = df.select_dtypes(include=['datetime64']).columns
for col in datetime_columns:
df[f"{col}_year"] = df[col].dt.year
df[f"{col}_month"] = df[col].dt.month
df[f"{col}_day"] = df[col].dt.day
df[f"{col}_dayofweek"] = df[col].dt.dayofweek
df[f"{col}_quarter"] = df[col].dt.quarter
# Interaction features for numeric columns
numeric_columns = df.select_dtypes(include=[np.number]).columns
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
def feature_engineering(self, df: pd.DataFrame, max_interaction_features: int = 10) -> pd.DataFrame:
"""Create new features from existing data"""
# Date features if datetime columns exist
datetime_columns = df.select_dtypes(include=['datetime64']).columns
for col in datetime_columns:
df[f"{col}_year"] = df[col].dt.year
df[f"{col}_month"] = df[col].dt.month
df[f"{col}_day"] = df[col].dt.day
df[f"{col}_dayofweek"] = df[col].dt.dayofweek
df[f"{col}_quarter"] = df[col].dt.quarter
# Interaction features for numeric columns (limited)
numeric_columns = df.select_dtypes(include=[np.number]).columns[:5] # Limit to first 5 columns
feature_count = 0
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
if feature_count >= max_interaction_features:
break
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
feature_count += 2
if feature_count >= max_interaction_features:
break
return df
Standards
  • ISO-IEC-25010-Performance-Resource-Utilization
  • Algorithm-Opt-Complexity-Reduction

Comment on lines +93 to +99
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

logger.info(f"Cleaned data: {len(df)} rows remaining")
return df

def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
"""Apply various data transformations"""
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Exception Handling Gap

No exception handling for columns with non-numeric data or NaN values. Quantile operations on invalid data will cause runtime errors, crashing the data cleaning process.

Suggested change
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
"""Apply various data transformations"""
for col in numeric_columns:
try:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
except Exception as e:
logger.warning(f"Could not remove outliers for column {col}: {e}")
Standards
  • ISO-IEC-25010-Reliability-Fault-Tolerance
  • DbC-Error-Handling

@shivaji-dev1
Copy link

/refacto-test

@refacto-test
Copy link

refacto-test bot commented Aug 16, 2025

PR already reviewed at the latest commit: 897b91a.
Please try again with new changes.

@shivaji-dev1
Copy link

/refacto-test

@refacto-test
Copy link

refacto-test bot commented Aug 19, 2025

Code Review: Data Analytics Engine

👍 Well Done
Comprehensive Analytics Pipeline

Well-structured data analytics engine with modular components for processing, analysis, visualization and reporting.

📌 Files Processed
  • test_user_management.py
  • data_analytics_engine.py
📝 Additional Comments
data_analytics_engine.py (6)
Aggressive Data Removal

Automatically removing outliers without user consent can lead to data integrity issues and potentially hide security-relevant anomalies. This could mask indicators of security incidents or lead to incorrect analytical conclusions affecting security decisions.

def clean_data(self, df: pd.DataFrame, remove_outliers: bool = False) -> pd.DataFrame:
    """Clean and preprocess data"""
    if df.empty:
        return df
        
    # Remove duplicates
    df = df.drop_duplicates()
    
    # Handle missing values
    numeric_columns = df.select_dtypes(include=[np.number]).columns
    categorical_columns = df.select_dtypes(include=['object']).columns
    
    # Fill numeric missing values with median
    for col in numeric_columns:
        if df[col].isnull().sum() > 0:
            df[col].fillna(df[col].median(), inplace=True)
    
    # Fill categorical missing values with mode
    for col in categorical_columns:
        if df[col].isnull().sum() > 0:
            df[col].fillna(df[col].mode()[0], inplace=True)
    
    # Optionally remove outliers using IQR method for numeric columns
    if remove_outliers:
        for col in numeric_columns:
            try:
                Q1 = df[col].quantile(0.25)
                Q3 = df[col].quantile(0.75)
                IQR = Q3 - Q1
                lower_bound = Q1 - 1.5 * IQR
                upper_bound = Q3 + 1.5 * IQR
                df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
            except Exception as e:
                logger.warning(f"Could not remove outliers for column {col}: {e}")
    
    logger.info(f"Cleaned data: {len(df)} rows remaining")
    return df

Standards:

  • CWE-754
  • OWASP-A04
Trend Calculation Error

The trend analysis uses np.polyfit on potentially NaN values without handling them, which will cause the entire calculation to return NaN. This leads to incorrect trend analysis results when the time series contains any missing values.

# Filter out NaN values before calculating trend
valid_mask = ~np.isnan(df_sorted[value_column].values)
if valid_mask.sum() > 1:  # Need at least 2 points for a line
    x = np.arange(len(df_sorted))[valid_mask]
    y = df_sorted[value_column].values[valid_mask]
    slope, intercept = np.polyfit(x, y, 1)
else:
    slope, intercept = 0, 0

Standards:

  • Algorithm-Correctness-Missing-Data-Handling
  • Mathematical-Accuracy-Regression-Analysis
Seasonality Logic Flaw

The seasonality detection assumes the time_column is already a datetime type and requires 365 data points regardless of time granularity. This logic fails if the time column is a string or if data spans multiple years but with fewer than 365 points.

# Calculate seasonality if possible
seasonality = {}
try:
    # Convert to datetime if not already
    if not pd.api.types.is_datetime64_any_dtype(df_sorted[time_column]):
        dt_series = pd.to_datetime(df_sorted[time_column], errors='coerce')
    else:
        dt_series = df_sorted[time_column]
    
    # Check if we have at least data from multiple months
    if dt_series.dt.month.nunique() > 1:
        df_sorted['month'] = dt_series.dt.month
        monthly_avg = df_sorted.groupby('month')[value_column].mean()
        seasonality = monthly_avg.to_dict()
except Exception as e:
    logger.warning(f"Could not calculate seasonality: {e}")

Standards:

  • Algorithm-Correctness-Time-Series-Analysis
  • Business-Rule-Data-Type-Safety
Inefficient Outlier Detection Implementation

The outlier detection creates a new filtered dataframe for each column, causing O(n²) complexity. For large datasets with many columns, this approach causes significant performance degradation as each column requires a full dataframe scan.

        for col in numeric_columns:
            if method == "iqr":
                Q1 = df[col].quantile(0.25)
                Q3 = df[col].quantile(0.75)
                IQR = Q3 - Q1
                lower_bound = Q1 - 1.5 * IQR
                upper_bound = Q3 + 1.5 * IQR
                mask = (df[col] < lower_bound) | (df[col] > upper_bound)
                outlier_indices = df.index[mask]

Standards:

  • ISO-IEC-25010-Performance-Time-Behaviour
  • Algorithm-Opt-Vectorization
Unused data_cache attribute in DataProcessor class

The data_cache dictionary is initialized in the constructor but never used throughout the class. Dead code increases cognitive load and can confuse developers about expected functionality.

def __init__(self, config: AnalyticsConfig):
        self.config = config
        # Remove unused data_cache attribute

Standards:

  • Clean-Code-G12
  • SOLID-SRP
  • Refactoring-RemoveDeadCode
Inconsistent module import locations

Importing modules inside methods violates PEP 8 style guidelines and can lead to circular dependencies or delayed import errors. This pattern is used in multiple places throughout the code.

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import json
import csv
import sqlite3
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Union
from dataclasses import dataclass
from abc import ABC, abstractmethod
import warnings

Standards:

  • Clean-Code-G11
  • PEP8-E402
  • Refactoring-MoveMethod

df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Injection Risk

The SQL query uses a hardcoded table name without proper validation. If the table name is later made configurable, it could introduce SQL injection vulnerabilities if not properly parameterized, as string formatting with f-strings for SQL is used elsewhere in the codebase.

Suggested change
df = pd.read_sql_query("SELECT * FROM data", conn)
def load_data(self, source: str, data_type: str = "csv", table_name: str = "data") -> pd.DataFrame:
"""Load data from various sources"""
try:
if data_type == "csv":
df = pd.read_csv(source)
elif data_type == "json":
df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
# Validate table name to prevent SQL injection
if not re.match(r'^[a-zA-Z0-9_]+$', table_name):
raise ValueError(f"Invalid table name: {table_name}")
df = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)
conn.close()
else:
raise ValueError(f"Unsupported data type: {data_type}")
logger.info(f"Loaded {len(df)} rows from {source}")
return df
Standards
  • CWE-89
  • OWASP-A03

Comment on lines +336 to +343
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Path Traversal Risk

The export_chart method doesn't validate the filename parameter, which could lead to path traversal vulnerabilities. An attacker could provide filenames containing '../' to write files outside the intended directory, potentially overwriting system files.

Suggested change
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
import os
import re
# Create output directory if it doesn't exist
os.makedirs(self.config.output_dir, exist_ok=True)
# Sanitize filename to prevent path traversal
safe_filename = re.sub(r'[^a-zA-Z0-9_-]', '_', os.path.basename(filename))
if format == "html":
fig.write_html(f"{self.config.output_dir}/{safe_filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{safe_filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{safe_filename}.pdf")
Standards
  • CWE-22
  • OWASP-A01

Comment on lines +53 to +55
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Resource Leak in Database Connection

Database connection isn't closed in exception paths. If read_sql_query fails, the connection remains open, potentially causing resource exhaustion over time as connections accumulate. This can lead to database unavailability.

Suggested change
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
elif data_type == "sqlite":
with sqlite3.connect(source) as conn:
df = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)
Standards
  • ISO-IEC-25010-Reliability-Resource-Utilization
  • SRE-Resource-Management
  • DbC-Resource-Cleanup

Comment on lines +93 to +98
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

logger.info(f"Cleaned data: {len(df)} rows remaining")
return df

def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unhandled Exception in Outlier Detection

Quantile operations can fail on columns with non-numeric data or all NaN values, causing unhandled exceptions that crash the entire data cleaning process. This creates a reliability gap in the data processing pipeline.

Suggested change
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
for col in numeric_columns:
try:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
except Exception as e:
logger.warning(f"Could not remove outliers for column {col}: {e}")
Standards
  • ISO-IEC-25010-Reliability-Fault-Tolerance
  • SRE-Error-Handling
  • DbC-Defensive-Programming

Comment on lines +337 to +342
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Missing Directory Creation Before File Export

The export_chart method attempts to write files without ensuring the output directory exists. If the directory doesn't exist, file operations will fail with FileNotFoundError, causing chart export to silently fail.

Suggested change
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
import os
os.makedirs(self.config.output_dir, exist_ok=True)
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
Standards
  • ISO-IEC-25010-Reliability-Fault-Tolerance
  • SRE-Error-Handling
  • DbC-Precondition-Validation

Comment on lines +141 to +147
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)

return df
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

O(n²) Complexity in Feature Engineering

The nested loop creates O(n²) feature combinations where n is the number of numeric columns. For datasets with many numeric columns, this generates excessive features causing memory spikes and computation bottlenecks.

Suggested change
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
return df
# Interaction features for numeric columns (limited)
numeric_columns = df.select_dtypes(include=[np.number]).columns
max_interaction_features = 10 # Limit total interaction features
feature_count = 0
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
if feature_count >= max_interaction_features:
break
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
feature_count += 2
if feature_count >= max_interaction_features:
break
Standards
  • ISO-IEC-25010-Performance-Time-Behaviour
  • Algorithm-Opt-Complexity-Reduction

Comment on lines +93 to +96
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Outlier Removal Logic

The outlier removal logic modifies the dataframe in-place during iteration, which can lead to incorrect results as the dataframe's size changes during the loop. This creates a logical inconsistency where outliers in later columns are evaluated against an already filtered dataset.

Suggested change
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
def clean_data(self, df: pd.DataFrame, remove_outliers: bool = False) -> pd.DataFrame:
"""Clean and preprocess data"""
if df.empty:
return df
# Remove duplicates
df = df.drop_duplicates()
# Handle missing values
numeric_columns = df.select_dtypes(include=[np.number]).columns
categorical_columns = df.select_dtypes(include=['object']).columns
# Fill numeric missing values with median
for col in numeric_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].median(), inplace=True)
# Fill categorical missing values with mode
for col in categorical_columns:
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].mode()[0], inplace=True)
# Remove outliers using IQR method for numeric columns
if remove_outliers:
mask = pd.Series(True, index=df.index)
for col in numeric_columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
col_mask = (df[col] >= lower_bound) & (df[col] <= upper_bound)
mask &= col_mask
df = df[mask]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
Standards
  • Algorithm-Correctness-Data-Filtering
  • Mathematical-Accuracy-Statistical-Operations

for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Division By Zero

The code adds a small epsilon (1e-8) to prevent division by zero, but this approach can produce misleading results when col2 contains legitimate zeros. This creates incorrect ratio features that may lead to incorrect analytical conclusions.

Suggested change
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
df[f"{col1}_{col2}_ratio"] = np.divide(df[col1], df[col2], out=np.zeros_like(df[col1]), where=df[col2]!=0)
Standards
  • Mathematical-Accuracy-Division-Safety
  • Algorithm-Correctness-Numerical-Stability

from dataclasses import dataclass
from abc import ABC, abstractmethod
import warnings
warnings.filterwarnings('ignore')
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unsafe Warning Suppression

Globally suppressing all warnings can hide important security issues, deprecation notices, or data integrity problems. This makes it harder to identify potential vulnerabilities and bugs during development and in production.

Suggested change
warnings.filterwarnings('ignore')
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Instead of suppressing all warnings, handle specific ones where needed
# For example:
# import warnings
# warnings.filterwarnings('ignore', category=FutureWarning, module='pandas')
Standards
  • CWE-778
  • OWASP-A04

Comment on lines +373 to +375
report.append(f"### {col}")
report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Potential Type Error

Using 'N/A' as a default value for numeric formatting will cause TypeError when formatting with :.2f. This could crash the report generation process, potentially leading to denial of service or information disclosure through error messages.

Suggested change
report.append(f"### {col}")
report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
report.append(f"### {col}")
mean_val = stats['mean'].get(col)
median_val = stats['median'].get(col)
std_val = stats['std'].get(col)
report.append(f"- Mean: {mean_val:.2f}" if mean_val is not None else "- Mean: N/A")
report.append(f"- Median: {median_val:.2f}" if median_val is not None else "- Median: N/A")
report.append(f"- Std Dev: {std_val:.2f}" if std_val is not None else "- Std Dev: N/A")
report.append("")
Standards
  • CWE-703
  • OWASP-A04

@shivaji-dev1
Copy link

/refacto-test

@refacto-test
Copy link

refacto-test bot commented Aug 19, 2025

Code Review: Data Analytics Engine Reliability and Security

👍 Well Done
Comprehensive Analytics Pipeline

Well-structured data processing workflow with clear separation of concerns between loading, cleaning, and transformation stages.

Extensible Configuration System

The AnalyticsConfig dataclass provides a flexible configuration system that allows for customization of the analytics engine behavior.

📌 Files Processed
  • test_user_management.py
  • data_analytics_engine.py
📝 Additional Comments
data_analytics_engine.py (4)
Outlier removal should be optional with a parameter

Automatically removing outliers in the clean_data method is too aggressive and can lead to unintended data loss. Different analyses may require different outlier handling approaches, making this automatic removal a maintainability issue.

    def clean_data(self, df: pd.DataFrame, remove_outliers: bool = False) -> pd.DataFrame:
        """Clean and preprocess data"""
        if df.empty:
            return df
            
        # Remove duplicates
        df = df.drop_duplicates()
        
        # Handle missing values
        numeric_columns = df.select_dtypes(include=[np.number]).columns
        categorical_columns = df.select_dtypes(include=['object']).columns
        
        # Fill numeric missing values with median
        for col in numeric_columns:
            if df[col].isnull().sum() > 0:
                df[col].fillna(df[col].median(), inplace=True)
        
        # Fill categorical missing values with mode
        for col in categorical_columns:
            if df[col].isnull().sum() > 0:
                mode_values = df[col].mode()
                if not mode_values.empty:
                    df[col].fillna(mode_values[0], inplace=True)
        
        # Optionally remove outliers using IQR method for numeric columns
        if remove_outliers:
            mask = pd.Series(True, index=df.index)
            for col in numeric_columns:
                try:
                    Q1 = df[col].quantile(0.25)
                    Q3 = df[col].quantile(0.75)
                    IQR = Q3 - Q1
                    lower_bound = Q1 - 1.5 * IQR
                    upper_bound = Q3 + 1.5 * IQR
                    col_mask = (df[col] >= lower_bound) & (df[col] <= upper_bound)
                    mask &= col_mask
                except Exception as e:
                    logger.warning(f"Could not process outliers for column {col}: {e}")
            df = df[mask]
        
        logger.info(f"Cleaned data: {len(df)} rows remaining")
        return df

Standards:

  • Clean-Code-Configuration
  • SOLID-Open-Closed
  • Refactoring-Parameterize-Method
Unsafe Global Warning Suppression

Globally suppressing all warnings can hide important issues like deprecation notices or data integrity problems. This makes it harder to identify potential reliability issues during development and in production.

import warnings
# Only suppress specific warnings when needed
# For example: warnings.filterwarnings('ignore', category=FutureWarning, module='pandas')

Standards:

  • ISO-IEC-25010-Reliability-Maturity
  • SRE-Observability
  • DbC-Defensive-Programming
Imports inside methods reduce code clarity

Importing modules inside methods rather than at the top of the file makes dependencies harder to track and can cause performance issues with repeated imports. This pattern appears in multiple places, reducing code maintainability.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import json
import csv
import sqlite3
import logging
import os
import re
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Union
from dataclasses import dataclass
from abc import ABC, abstractmethod
import warnings

Standards:

  • Clean-Code-Organization
  • PEP8-Import-Location
  • Refactoring-Move-Declaration
Unused data_cache attribute creates confusion

The DataProcessor class initializes a data_cache dictionary that is never used throughout the class. This creates confusion about the intended caching functionality and adds unnecessary cognitive load for developers trying to understand the code.

    def __init__(self, config: AnalyticsConfig):
        self.config = config
        # Remove unused data_cache attribute until caching is implemented

Standards:

  • Clean-Code-Dead-Code
  • SOLID-Single-Responsibility
  • Refactoring-Remove-Dead-Code

Comment on lines +337 to +344
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Path Traversal Risk in Chart Export

The export_chart method doesn't validate the filename parameter, allowing path traversal attacks. An attacker could provide filenames with '../' sequences to write files outside the intended directory, potentially overwriting system files or accessing sensitive information.

Suggested change
"""Export chart to various formats"""
if format == "html":
fig.write_html(f"{self.config.output_dir}/{filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{filename}.pdf")
def export_chart(self, fig: go.Figure, filename: str, format: str = "html"):
"""Export chart to various formats"""
import os
import re
# Create output directory if it doesn't exist
os.makedirs(self.config.output_dir, exist_ok=True)
# Sanitize filename to prevent path traversal
safe_filename = re.sub(r'[^a-zA-Z0-9_-]', '_', os.path.basename(filename))
if format == "html":
fig.write_html(f"{self.config.output_dir}/{safe_filename}.html")
elif format == "png":
fig.write_image(f"{self.config.output_dir}/{safe_filename}.png")
elif format == "pdf":
fig.write_image(f"{self.config.output_dir}/{safe_filename}.pdf")
Standards
  • CWE-22
  • OWASP-A01

Comment on lines +93 to +100
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

logger.info(f"Cleaned data: {len(df)} rows remaining")
return df

def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
"""Apply various data transformations"""
for transform in transformations:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unhandled Exception in Outlier Detection

Quantile operations can fail on columns with non-numeric data or all NaN values, causing unhandled exceptions that crash the entire data cleaning process. This creates a reliability gap in the data processing pipeline.

Suggested change
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
"""Apply various data transformations"""
for transform in transformations:
# Remove outliers using IQR method for numeric columns
for col in numeric_columns:
try:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
except Exception as e:
logger.warning(f"Could not remove outliers for column {col}: {e}")
Standards
  • ISO-IEC-25010-Reliability-Fault-Tolerance
  • SRE-Error-Handling
  • DbC-Defensive-Programming

Comment on lines +93 to +98
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

logger.info(f"Cleaned data: {len(df)} rows remaining")
return df

def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Memory Leak in DataFrame Operations

The outlier removal logic creates a new DataFrame for each column processed, causing excessive memory allocation. For large datasets with many columns, this leads to significant memory spikes and potential out-of-memory errors as each iteration allocates a new DataFrame.

Suggested change
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
logger.info(f"Cleaned data: {len(df)} rows remaining")
return df
def transform_data(self, df: pd.DataFrame, transformations: List[Dict]) -> pd.DataFrame:
# Remove outliers using IQR method for numeric columns
if df.empty:
return df
# Create a single mask for all columns
mask = pd.Series(True, index=df.index)
for col in numeric_columns:
try:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
col_mask = (df[col] >= lower_bound) & (df[col] <= upper_bound)
mask &= col_mask
except Exception as e:
logger.warning(f"Could not process outliers for column {col}: {e}")
# Apply the combined mask once
df = df[mask]
Standards
  • ISO-IEC-25010-Performance-Resource-Utilization
  • Algorithm-Opt-Batch-Loading

Comment on lines +83 to +85
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].mode()[0], inplace=True)

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Mode Access Error in Categorical Data Cleaning

The code assumes df[col].mode() always returns a non-empty Series, but mode() can return an empty Series if all values are NaN or there's no unique mode. This will cause an IndexError when accessing index [0], breaking the data cleaning process.

Suggested change
if df[col].isnull().sum() > 0:
df[col].fillna(df[col].mode()[0], inplace=True)
for col in categorical_columns:
if df[col].isnull().sum() > 0:
mode_values = df[col].mode()
if not mode_values.empty:
df[col].fillna(mode_values[0], inplace=True)
Standards
  • Algorithm-Correctness-Data-Processing
  • Mathematical-Accuracy-Statistical-Operations

Comment on lines +52 to +55
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Resource Leak in Database Connection

Database connection isn't closed in exception paths. If read_sql_query fails, the connection remains open, potentially causing resource exhaustion over time as connections accumulate, leading to database unavailability.

Suggested change
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
elif data_type == "sqlite":
with sqlite3.connect(source) as conn:
df = pd.read_sql_query("SELECT * FROM data", conn)
Standards
  • ISO-IEC-25010-Reliability-Resource-Utilization
  • SRE-Resource-Management
  • DbC-Resource-Cleanup

Comment on lines +142 to +148
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)

return df

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unbounded Feature Engineering Complexity

The feature engineering creates O(n²) feature combinations where n is the number of numeric columns. With many numeric columns, this generates excessive features causing memory spikes and performance degradation. A dataset with 100 numeric columns would create 9,900 new columns.

Suggested change
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
return df
# Interaction features for numeric columns (limited)
numeric_columns = df.select_dtypes(include=[np.number]).columns
max_interaction_features = 10 # Limit total interaction features
feature_count = 0
if len(numeric_columns) >= 2:
for i, col1 in enumerate(numeric_columns):
for col2 in numeric_columns[i+1:]:
if feature_count >= max_interaction_features:
break
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = np.divide(df[col1], df[col2], out=np.zeros_like(df[col1]), where=df[col2]!=0)
feature_count += 2
if feature_count >= max_interaction_features:
break
Standards
  • ISO-IEC-25010-Performance-Time-Behaviour
  • Algorithm-Opt-Complexity-Reduction

Comment on lines +373 to +377
report.append(f"### {col}")
report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
report.append(f"- Std Dev: {stats['std'].get(col, 'N/A'):.2f}")
report.append("")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Statistical Formatting Error

Using 'N/A' as default for numeric values will cause TypeError when formatting with :.2f since 'N/A' is a string. This will crash the report generation process when a column is missing from the statistics dictionary.

Suggested change
report.append(f"### {col}")
report.append(f"- Mean: {stats['mean'].get(col, 'N/A'):.2f}")
report.append(f"- Median: {stats['median'].get(col, 'N/A'):.2f}")
report.append(f"- Std Dev: {stats['std'].get(col, 'N/A'):.2f}")
report.append("")
report.append(f"### {col}")
mean_val = stats['mean'].get(col)
median_val = stats['median'].get(col)
std_val = stats['std'].get(col)
report.append(f"- Mean: {mean_val:.2f}" if mean_val is not None else "- Mean: N/A")
report.append(f"- Median: {median_val:.2f}" if median_val is not None else "- Median: N/A")
report.append(f"- Std Dev: {std_val:.2f}" if std_val is not None else "- Std Dev: N/A")
report.append("")
Standards
  • Algorithm-Correctness-Type-Safety
  • Business-Rule-Error-Handling

Comment on lines +52 to +55
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Injection Risk in Database Query

The SQL query uses a hardcoded table name. If this becomes configurable, it could introduce SQL injection vulnerabilities if not properly parameterized, especially since string formatting with f-strings for SQL is used elsewhere in the codebase.

Suggested change
conn = sqlite3.connect(source)
df = pd.read_sql_query("SELECT * FROM data", conn)
conn.close()
else:
def load_data(self, source: str, data_type: str = "csv", table_name: str = "data") -> pd.DataFrame:
"""Load data from various sources"""
try:
if data_type == "csv":
df = pd.read_csv(source)
elif data_type == "json":
df = pd.read_json(source)
elif data_type == "sqlite":
conn = sqlite3.connect(source)
# Validate table name to prevent SQL injection
if not re.match(r'^[a-zA-Z0-9_]+$', table_name):
raise ValueError(f"Invalid table name: {table_name}")
df = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)
conn.close()
else:
raise ValueError(f"Unsupported data type: {data_type}")
logger.info(f"Loaded {len(df)} rows from {source}")
return df
Standards
  • CWE-89
  • OWASP-A03

Comment on lines +144 to +145
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unsafe Division Operation

Adding a small epsilon (1e-8) to prevent division by zero can produce misleading results when col2 contains legitimate zeros. This creates incorrect ratio features that may lead to incorrect analytical conclusions.

Suggested change
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = df[col1] / (df[col2] + 1e-8)
df[f"{col1}_{col2}_product"] = df[col1] * df[col2]
df[f"{col1}_{col2}_ratio"] = np.divide(df[col1], df[col2], out=np.zeros_like(df[col1]), where=df[col2]!=0)
Standards
  • Mathematical-Accuracy-Division-Safety
  • Algorithm-Correctness-Numerical-Stability

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants