Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 14 additions & 4 deletions comfy_extras/nodes_wan.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ def define_schema(cls):
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Int.Input("vae_tile_size", default=0, min=0, optional=True, tooltip="VAE encode tile size, 0 means untiled (default)"),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
],
Expand All @@ -37,14 +38,18 @@ def define_schema(cls):
)

@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput:
def execute(cls, positive, negative, vae, width, height, length, batch_size, vae_tile_size=0, start_image=None, clip_vision_output=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5
image[:start_image.shape[0]] = start_image

concat_latent_image = vae.encode(image[:, :, :, :3])
if vae_tile_size == 0:
concat_latent_image = vae.encode(image[:, :, :, :3])
else:
concat_latent_image = vae.encode_tiled(image[:, :, :, :3], tile_x=vae_tile_size, tile_y=vae_tile_size, overlap=32, tile_t=256, overlap_t=8)

mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0

Expand Down Expand Up @@ -192,6 +197,7 @@ def define_schema(cls):
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Int.Input("vae_tile_size", default=0, min=0, optional=True, tooltip="VAE encode tile size, 0 means untiled (default)"),
io.ClipVisionOutput.Input("clip_vision_start_image", optional=True),
io.ClipVisionOutput.Input("clip_vision_end_image", optional=True),
io.Image.Input("start_image", optional=True),
Expand All @@ -205,7 +211,7 @@ def define_schema(cls):
)

@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
def execute(cls, positive, negative, vae, width, height, length, batch_size, vae_tile_size=0, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
spacial_scale = vae.spacial_compression_encode()
latent = torch.zeros([batch_size, vae.latent_channels, ((length - 1) // 4) + 1, height // spacial_scale, width // spacial_scale], device=comfy.model_management.intermediate_device())
if start_image is not None:
Expand All @@ -224,7 +230,11 @@ def execute(cls, positive, negative, vae, width, height, length, batch_size, sta
image[-end_image.shape[0]:] = end_image
mask[:, :, -end_image.shape[0]:] = 0.0

concat_latent_image = vae.encode(image[:, :, :, :3])
if vae_tile_size == 0:
concat_latent_image = vae.encode(image[:, :, :, :3])
else:
concat_latent_image = vae.encode_tiled(image[:, :, :, :3], tile_x=vae_tile_size, tile_y=vae_tile_size, overlap=32, tile_t=256, overlap_t=8)

mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
Expand Down