|
| 1 | +import io |
| 2 | +import sys |
| 3 | +import markdown |
| 4 | +import numpy as np |
| 5 | +import matplotlib.pyplot as plt |
| 6 | +from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver |
| 7 | +from openpilot.selfdrive.controls.tests.test_following_distance import desired_follow_distance |
| 8 | + |
| 9 | +TIME = 0 |
| 10 | +EGO_V = 3 |
| 11 | +EGO_A = 5 |
| 12 | +LEAD_DISTANCE= 2 |
| 13 | + |
| 14 | +axis_labels = ['Time (s)', |
| 15 | + 'Ego position (m)', |
| 16 | + 'Lead distance (m)', |
| 17 | + 'Ego Velocity (m/s)', |
| 18 | + 'Lead Velocity (m/s)', |
| 19 | + 'Ego acceleration (m/s^2)', |
| 20 | + ] |
| 21 | + |
| 22 | + |
| 23 | +def get_html_from_results(results, labels, AXIS): |
| 24 | + fig, ax = plt.subplots(figsize=(16, 8)) |
| 25 | + for idx, speed in enumerate(list(results.keys())): |
| 26 | + ax.plot(results[speed][:, TIME], results[speed][:, AXIS], label=labels[idx]) |
| 27 | + |
| 28 | + ax.set_xlabel('Time (s)') |
| 29 | + ax.set_ylabel(axis_labels[AXIS]) |
| 30 | + ax.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0) |
| 31 | + ax.grid(True, linestyle='--', alpha=0.7) |
| 32 | + ax.text(-0.075, 0.5, '.', transform=ax.transAxes, color='none') |
| 33 | + |
| 34 | + fig_buffer = io.StringIO() |
| 35 | + fig.savefig(fig_buffer, format='svg', bbox_inches='tight') |
| 36 | + plt.close(fig) |
| 37 | + return fig_buffer.getvalue() + '<br/>' |
| 38 | + |
| 39 | + |
| 40 | +htmls = [] |
| 41 | + |
| 42 | +results = {} |
| 43 | +name = 'Resuming behind lead' |
| 44 | +labels = [] |
| 45 | +for lead_accel in np.linspace(1.0, 4.0, 4): |
| 46 | + man = Maneuver( |
| 47 | + '', |
| 48 | + duration=11, |
| 49 | + initial_speed=0.0, |
| 50 | + lead_relevancy=True, |
| 51 | + initial_distance_lead=desired_follow_distance(0.0, 0.0), |
| 52 | + speed_lead_values=[0.0, 10 * lead_accel], |
| 53 | + cruise_values=[100, 100], |
| 54 | + prob_lead_values=[1.0, 1.0], |
| 55 | + breakpoints=[1., 11], |
| 56 | + ) |
| 57 | + valid, results[lead_accel] = man.evaluate() |
| 58 | + labels.append(f'{lead_accel} m/s^2 lead acceleration') |
| 59 | + |
| 60 | +htmls.append(markdown.markdown('# ' + name)) |
| 61 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 62 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 63 | + |
| 64 | + |
| 65 | +results = {} |
| 66 | +name = 'Approaching stopped car from 140m' |
| 67 | +labels = [] |
| 68 | +for speed in np.arange(0,45,5): |
| 69 | + man = Maneuver( |
| 70 | + name, |
| 71 | + duration=30., |
| 72 | + initial_speed=float(speed), |
| 73 | + lead_relevancy=True, |
| 74 | + initial_distance_lead=140., |
| 75 | + speed_lead_values=[0.0, 0.], |
| 76 | + breakpoints=[0., 30.], |
| 77 | + ) |
| 78 | + valid, results[speed] = man.evaluate() |
| 79 | + results[speed][:,2] = results[speed][:,2] - results[speed][:,1] |
| 80 | + labels.append(f'{speed} m/s approach speed') |
| 81 | + |
| 82 | +htmls.append(markdown.markdown('# ' + name)) |
| 83 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 84 | +htmls.append(get_html_from_results(results, labels, LEAD_DISTANCE)) |
| 85 | + |
| 86 | + |
| 87 | +results = {} |
| 88 | +name = 'Following 5s oscillating lead' |
| 89 | +labels = [] |
| 90 | +speed = np.int64(10) |
| 91 | +for oscil in np.arange(0, 10, 1): |
| 92 | + man = Maneuver( |
| 93 | + '', |
| 94 | + duration=30., |
| 95 | + initial_speed=float(speed), |
| 96 | + lead_relevancy=True, |
| 97 | + initial_distance_lead=desired_follow_distance(speed, speed), |
| 98 | + speed_lead_values=[speed, speed, speed - oscil, speed + oscil, speed - oscil, speed + oscil, speed - oscil], |
| 99 | + breakpoints=[0.,2., 5, 8, 15, 18, 25.], |
| 100 | + ) |
| 101 | + valid, results[oscil] = man.evaluate() |
| 102 | + labels.append(f'{oscil} m/s oscilliation size') |
| 103 | + |
| 104 | +htmls.append(markdown.markdown('# ' + name)) |
| 105 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 106 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 107 | + |
| 108 | + |
| 109 | + |
| 110 | +results = {} |
| 111 | +name = 'Speed profile when converging to steady state lead at 30m/s' |
| 112 | +labels = [] |
| 113 | +for distance in np.arange(20, 140, 10): |
| 114 | + man = Maneuver( |
| 115 | + '', |
| 116 | + duration=50, |
| 117 | + initial_speed=30.0, |
| 118 | + lead_relevancy=True, |
| 119 | + initial_distance_lead=distance, |
| 120 | + speed_lead_values=[30.0], |
| 121 | + breakpoints=[0.], |
| 122 | + ) |
| 123 | + valid, results[distance] = man.evaluate() |
| 124 | + results[distance][:,2] = results[distance][:,2] - results[distance][:,1] |
| 125 | + labels.append(f'{distance} m initial distance') |
| 126 | + |
| 127 | +htmls.append(markdown.markdown('# ' + name)) |
| 128 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 129 | +htmls.append(get_html_from_results(results, labels, LEAD_DISTANCE)) |
| 130 | + |
| 131 | + |
| 132 | +results = {} |
| 133 | +name = 'Speed profile when converging to steady state lead at 20m/s' |
| 134 | +labels = [] |
| 135 | +for distance in np.arange(20, 140, 10): |
| 136 | + man = Maneuver( |
| 137 | + '', |
| 138 | + duration=50, |
| 139 | + initial_speed=20.0, |
| 140 | + lead_relevancy=True, |
| 141 | + initial_distance_lead=distance, |
| 142 | + speed_lead_values=[20.0], |
| 143 | + breakpoints=[0.], |
| 144 | + ) |
| 145 | + valid, results[distance] = man.evaluate() |
| 146 | + results[distance][:,2] = results[distance][:,2] - results[distance][:,1] |
| 147 | + labels.append(f'{distance} m initial distance') |
| 148 | + |
| 149 | +htmls.append(markdown.markdown('# ' + name)) |
| 150 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 151 | +htmls.append(get_html_from_results(results, labels, LEAD_DISTANCE)) |
| 152 | + |
| 153 | + |
| 154 | +results = {} |
| 155 | +name = 'Following car at 30m/s that comes to a stop' |
| 156 | +labels = [] |
| 157 | +for stop_time in np.arange(4, 14, 1): |
| 158 | + man = Maneuver( |
| 159 | + '', |
| 160 | + duration=50, |
| 161 | + initial_speed=30.0, |
| 162 | + lead_relevancy=True, |
| 163 | + initial_distance_lead=60.0, |
| 164 | + speed_lead_values=[30.0, 30.0, 0.0, 0.0], |
| 165 | + breakpoints=[0., 20., 20 + stop_time, 30 + stop_time], |
| 166 | + ) |
| 167 | + valid, results[stop_time] = man.evaluate() |
| 168 | + results[stop_time][:,2] = results[stop_time][:,2] - results[stop_time][:,1] |
| 169 | + labels.append(f'{stop_time} seconds stop time') |
| 170 | + |
| 171 | +htmls.append(markdown.markdown('# ' + name)) |
| 172 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 173 | +htmls.append(get_html_from_results(results, labels, LEAD_DISTANCE)) |
| 174 | + |
| 175 | + |
| 176 | +results = {} |
| 177 | +name = 'Response to cut-in at half follow distance' |
| 178 | +labels = [] |
| 179 | +for speed in np.arange(0, 40, 5): |
| 180 | + man = Maneuver( |
| 181 | + '', |
| 182 | + duration=10, |
| 183 | + initial_speed=float(speed), |
| 184 | + lead_relevancy=True, |
| 185 | + initial_distance_lead=desired_follow_distance(speed, speed)/2, |
| 186 | + speed_lead_values=[speed, speed, speed], |
| 187 | + cruise_values=[speed, speed, speed], |
| 188 | + prob_lead_values=[0.0, 0.0, 1.0], |
| 189 | + breakpoints=[0., 5.0, 5.01], |
| 190 | + ) |
| 191 | + valid, results[speed] = man.evaluate() |
| 192 | + labels.append(f'{speed} m/s speed') |
| 193 | + |
| 194 | +htmls.append(markdown.markdown('# ' + name)) |
| 195 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 196 | +htmls.append(get_html_from_results(results, labels, LEAD_DISTANCE)) |
| 197 | + |
| 198 | + |
| 199 | +results = {} |
| 200 | +name = 'Follow a lead that accelerates at 2m/s^2 until steady state speed' |
| 201 | +labels = [] |
| 202 | +for speed in np.arange(0, 40, 5): |
| 203 | + man = Maneuver( |
| 204 | + '', |
| 205 | + duration=50, |
| 206 | + initial_speed=0.0, |
| 207 | + lead_relevancy=True, |
| 208 | + initial_distance_lead=desired_follow_distance(0.0, 0.0), |
| 209 | + speed_lead_values=[0.0, 0.0, speed], |
| 210 | + prob_lead_values=[1.0, 1.0, 1.0], |
| 211 | + breakpoints=[0., 1.0, speed/2], |
| 212 | + ) |
| 213 | + valid, results[speed] = man.evaluate() |
| 214 | + labels.append(f'{speed} m/s speed') |
| 215 | + |
| 216 | +htmls.append(markdown.markdown('# ' + name)) |
| 217 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 218 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 219 | + |
| 220 | + |
| 221 | +results = {} |
| 222 | +name = 'From stop to cruise' |
| 223 | +labels = [] |
| 224 | +for speed in np.arange(0, 40, 5): |
| 225 | + man = Maneuver( |
| 226 | + '', |
| 227 | + duration=50, |
| 228 | + initial_speed=0.0, |
| 229 | + lead_relevancy=True, |
| 230 | + initial_distance_lead=desired_follow_distance(0.0, 0.0), |
| 231 | + speed_lead_values=[0.0, 0.0], |
| 232 | + cruise_values=[0.0, speed], |
| 233 | + prob_lead_values=[0.0, 0.0], |
| 234 | + breakpoints=[1., 1.01], |
| 235 | + ) |
| 236 | + valid, results[speed] = man.evaluate() |
| 237 | + labels.append(f'{speed} m/s speed') |
| 238 | + |
| 239 | +htmls.append(markdown.markdown('# ' + name)) |
| 240 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 241 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 242 | + |
| 243 | + |
| 244 | +results = {} |
| 245 | +name = 'From cruise to min' |
| 246 | +labels = [] |
| 247 | +for speed in np.arange(10, 40, 5): |
| 248 | + man = Maneuver( |
| 249 | + '', |
| 250 | + duration=50, |
| 251 | + initial_speed=float(speed), |
| 252 | + lead_relevancy=True, |
| 253 | + initial_distance_lead=desired_follow_distance(0.0, 0.0), |
| 254 | + speed_lead_values=[0.0, 0.0], |
| 255 | + cruise_values=[speed, 10.0], |
| 256 | + prob_lead_values=[0.0, 0.0], |
| 257 | + breakpoints=[1., 1.01], |
| 258 | + ) |
| 259 | + valid, results[speed] = man.evaluate() |
| 260 | + labels.append(f'{speed} m/s speed') |
| 261 | + |
| 262 | +htmls.append(markdown.markdown('# ' + name)) |
| 263 | +htmls.append(get_html_from_results(results, labels, EGO_V)) |
| 264 | +htmls.append(get_html_from_results(results, labels, EGO_A)) |
| 265 | + |
| 266 | +if len(sys.argv) < 2: |
| 267 | + file_name = 'long_mpc_tune_report.html' |
| 268 | +else: |
| 269 | + file_name = sys.argv[1] |
| 270 | + |
| 271 | +with open(file_name, 'w') as f: |
| 272 | + f.write(markdown.markdown('# MPC longitudinal tuning report')) |
| 273 | + |
| 274 | +with open(file_name, 'a') as f: |
| 275 | + for html in htmls: |
| 276 | + f.write(html) |
0 commit comments