Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion synapse_net/inference/cristae.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ def segment_cristae(
return_predictions: bool = False,
scale: Optional[List[float]] = None,
mask: Optional[np.ndarray] = None,
**kwargs
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
"""Segment cristae in an input volume.

Expand All @@ -61,6 +62,8 @@ def segment_cristae(
The segmentation mask as a numpy array, or a tuple containing the segmentation mask
and the predictions if return_predictions is True.
"""
with_channels = kwargs.pop("with_channels", True)
channels_to_standardize = kwargs.pop("channels_to_standardize", [0])
if verbose:
print("Segmenting cristae in volume of shape", input_volume.shape)
# Create the scaler to handle prediction with a different scaling factor.
Expand All @@ -72,7 +75,7 @@ def segment_cristae(
mask = scaler.scale_input(mask, is_segmentation=True)
pred = get_prediction(
input_volume, model_path=model_path, model=model, mask=mask,
tiling=tiling, with_channels=True, verbose=verbose
tiling=tiling, with_channels=with_channels, channels_to_standardize=channels_to_standardize, verbose=verbose
)
foreground, boundaries = pred[:2]
seg = _run_segmentation(foreground, verbose=verbose, min_size=min_size)
Expand Down
7 changes: 6 additions & 1 deletion synapse_net/inference/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from .mitochondria import segment_mitochondria
from .ribbon_synapse import segment_ribbon_synapse_structures
from .vesicles import segment_vesicles
from .cristae import segment_cristae
from .util import get_device
from ..file_utils import get_cache_dir

Expand All @@ -25,6 +26,7 @@ def _get_model_registry():
"compartments": "527983720f9eb215c45c4f4493851fd6551810361eda7b79f185a0d304274ee1",
"mitochondria": "24625018a5968b36f39fa9d73b121a32e8f66d0f2c0540d3df2e1e39b3d58186",
"mitochondria2": "553decafaff4838fff6cc8347f22c8db3dee5bcbeffc34ffaec152f8449af673",
"cristae": "f96c90484f4ea92ac0515a06e389cc117580f02c2aacdc44b5828820cf38c3c3",
"ribbon": "7c947f0ddfabe51a41d9d05c0a6ca7d6b238f43df2af8fffed5552d09bb075a9",
"vesicles_2d": "eb0b74f7000a0e6a25b626078e76a9452019f2d1ea6cf2033073656f4f055df1",
"vesicles_3d": "b329ec1f57f305099c984fbb3d7f6ae4b0ff51ec2fa0fa586df52dad6b84cf29",
Expand All @@ -35,6 +37,7 @@ def _get_model_registry():
"compartments": "https://owncloud.gwdg.de/index.php/s/DnFDeTmDDmZrDDX/download",
"mitochondria": "https://owncloud.gwdg.de/index.php/s/1T542uvzfuruahD/download",
"mitochondria2": "https://owncloud.gwdg.de/index.php/s/GZghrXagc54FFXd/download",
"cristae": "https://owncloud.gwdg.de/index.php/s/Df7OUOyQ1Kc2eEO/download",
"ribbon": "https://owncloud.gwdg.de/index.php/s/S3b5l0liPP1XPYA/download",
"vesicles_2d": "https://owncloud.gwdg.de/index.php/s/d72QIvdX6LsgXip/download",
"vesicles_3d": "https://owncloud.gwdg.de/index.php/s/A425mkAOSqePDhx/download",
Expand Down Expand Up @@ -214,14 +217,16 @@ def run_segmentation(
"""
if model_type.startswith("vesicles"):
segmentation = segment_vesicles(image, model=model, tiling=tiling, scale=scale, verbose=verbose, **kwargs)
elif model_type == "mitochondria":
elif model_type == "mitochondria" or model_type == "mitochondria2":
segmentation = segment_mitochondria(image, model=model, tiling=tiling, scale=scale, verbose=verbose, **kwargs)
elif model_type == "active_zone":
segmentation = segment_active_zone(image, model=model, tiling=tiling, scale=scale, verbose=verbose, **kwargs)
elif model_type == "compartments":
segmentation = segment_compartments(image, model=model, tiling=tiling, scale=scale, verbose=verbose, **kwargs)
elif model_type == "ribbon":
segmentation = _segment_ribbon_AZ(image, model=model, tiling=tiling, scale=scale, verbose=verbose, **kwargs)
elif model_type == "cristae":
segmentation = segment_cristae(image, model=model, tiling=tiling, scale=scale, verbose=verbose, **kwargs)
else:
raise ValueError(f"Unknown model type: {model_type}")
return segmentation
10 changes: 8 additions & 2 deletions synapse_net/inference/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import time
import warnings
from glob import glob
from typing import Dict, Optional, Tuple, Union
from typing import Dict, List, Optional, Tuple, Union

# # Suppress annoying import warnings.
# with warnings.catch_warnings():
Expand Down Expand Up @@ -85,6 +85,7 @@ def get_prediction(
model: Optional[torch.nn.Module] = None,
verbose: bool = True,
with_channels: bool = False,
channels_to_standardize: Optional[List[int]] = None,
mask: Optional[np.ndarray] = None,
) -> np.ndarray:
"""Run prediction on a given volume.
Expand All @@ -99,6 +100,7 @@ def get_prediction(
tiling: The tiling configuration for the prediction.
verbose: Whether to print timing information.
with_channels: Whether to predict with channels.
channels_to_standardize: List of channels to standardize. Defaults to None.
mask: Optional binary mask. If given, the prediction will only be run in
the foreground region of the mask.

Expand All @@ -120,8 +122,12 @@ def get_prediction(
# We standardize the data for the whole volume beforehand.
# If we have channels then the standardization is done independently per channel.
if with_channels:
input_volume = input_volume.astype(np.float32, copy=False)
# TODO Check that this is the correct axis.
input_volume = torch_em.transform.raw.standardize(input_volume, axis=(1, 2, 3))
if channels_to_standardize is None: # assume all channels
channels_to_standardize = range(input_volume.shape[0])
for ch in channels_to_standardize:
input_volume[ch] = torch_em.transform.raw.standardize(input_volume[ch])
else:
input_volume = torch_em.transform.raw.standardize(input_volume)

Expand Down
3 changes: 3 additions & 0 deletions synapse_net/tools/segmentation_widget.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,9 @@ def on_predict(self):
if model_type == "ribbon": # Currently only the ribbon model needs the extra seg.
extra_seg = self._get_layer_selector_data(self.extra_seg_selector_name)
kwargs = {"extra_segmentation": extra_seg}
elif model_type == "cristae": # Cristae model expects 2 3D volumes
image = np.stack([image, self._get_layer_selector_data(self.extra_seg_selector_name)], axis=0)
kwargs = {}
else:
kwargs = {}
segmentation = run_segmentation(
Expand Down