Skip to content

Commit d783d4f

Browse files
authored
Merge pull request #169 from control-toolbox/ocots-patch-1
Update CI.yml
2 parents 4ac3b88 + cb35d1c commit d783d4f

File tree

3 files changed

+6
-15
lines changed

3 files changed

+6
-15
lines changed

.github/workflows/CI.yml

Lines changed: 2 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,24 +1,12 @@
1-
# [.github/workflows/CI.yml]
21
name: CI
2+
33
on:
44
push:
55
branches:
66
- main
77
tags: '*'
88
pull_request:
9+
910
jobs:
1011
call:
11-
strategy:
12-
matrix:
13-
version:
14-
- '1.10'
15-
- '1.11'
16-
os:
17-
- ubuntu-latest
18-
arch:
19-
- x64
2012
uses: control-toolbox/CTActions/.github/workflows/ci.yml@main
21-
with:
22-
version: ${{ matrix.version }}
23-
os: ${{ matrix.os }}
24-
arch: ${{ matrix.arch }}

.github/workflows/SpellCheck.yml

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,3 +7,6 @@ on:
77
jobs:
88
call:
99
uses: control-toolbox/CTActions/.github/workflows/spell-check.yml@main
10+
with:
11+
extend-identifiers: |
12+
PROPT = "PROPT"

ext/Descriptions/robbins.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ The control $u(t)$ typically exhibits a **bang–bang structure** with possible
5656
- Robbins, H. M. (1980). *Junction phenomena for optimal control with state-variable inequality constraints of third order*. Journal of Optimization Theory and Applications, 31, 85–99.
5757
This is the original paper introducing the Robbins problem. It formulates the third-order state-constrained optimal control problem, describes the accumulation of contact points, and provides theoretical analysis of the junction phenomena.
5858

59-
- Hermant, A. (2008). *Sur l'algorithme de tir pour les problèmes de commande optimale avec contraintes sur l'état* (PhD thesis, École Polytechnique X).
59+
- Hermant, A. (2008). *On the shooting algorithm for optimal control problems with state constraints* (PhD thesis, École Polytechnique X).
6060
This thesis discusses numerical shooting methods for state-constrained optimal control problems, including the Robbins problem. It provides practical insights into solving problems with multiple contact points and complex singular arcs.
6161

6262
- Jacobson, D. H., Lele, M. M., & Speyer, J. L. (1971). *New necessary conditions of optimality for control problems with state-variable inequality constraints*. Journal of Mathematical Analysis and Applications, 35, 255–284.

0 commit comments

Comments
 (0)