Skip to content
This repository was archived by the owner on Nov 10, 2025. It is now read-only.
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 26 additions & 1 deletion crewai_tools/tools/rag/rag_tool.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,14 @@ def _parse_config(self, config: Any) -> Any:
return config

if isinstance(config, dict):
if "llm" in config and "embedder" in config and "vectordb" not in config:
embedder_config = config["embedder"]
if isinstance(embedder_config, dict) and "provider" in embedder_config:
embedding_function = self._create_embedding_function(
embedder_config, "chromadb"
)
return self._create_provider_config("chromadb", {}, embedding_function)

if "vectordb" in config:
vectordb_config = config["vectordb"]
if isinstance(vectordb_config, dict) and "provider" in vectordb_config:
Expand Down Expand Up @@ -131,8 +139,25 @@ def _create_embedding_function(embedding_config: dict, provider: str) -> Any:
if api_key:
factory_config["api_key"] = api_key


if provider == "chromadb":
if embedding_provider == "ollama":
try:
from chromadb.utils.embedding_functions.ollama_embedding_function import OllamaEmbeddingFunction

model_name = factory_config.get("model_name")
if not model_name:
raise ValueError("Ollama embedding function requires a model_name to be specified")

url = factory_config.get("url", "http://localhost:11434/api/embeddings")

embedding_func = OllamaEmbeddingFunction(
model_name=model_name,
url=url
)
return embedding_func
except ImportError:
pass

embedding_func = get_embedding_function(factory_config)
return embedding_func

Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ dependencies = [
"pypdf>=5.9.0",
"python-docx>=1.2.0",
"youtube-transcript-api>=1.2.2",
"ollama>=0.6.0",
]

[project.urls]
Expand Down
192 changes: 192 additions & 0 deletions tests/tools/test_mdx_search_tool_local_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
"""Tests for MDXSearchTool with local provider configurations."""

import pytest
from unittest.mock import patch, MagicMock
from crewai_tools.tools.mdx_search_tool.mdx_search_tool import MDXSearchTool


class TestMDXSearchToolLocalConfig:
"""Test MDXSearchTool with local provider configurations."""

def test_mdx_search_tool_with_local_ollama_config(self):
"""Test that MDXSearchTool can be created with local Ollama configuration without OpenAI API key."""
config = {
"llm": {
"provider": "ollama",
"config": {
"model": "llama3.1:8b",
"base_url": "http://localhost:11434",
"temperature": 0.3,
},
},
"embedder": {
"provider": "ollama",
"config": {
"model": "embeddinggemma:latest",
"base_url": "http://localhost:11434",
"task_type": "retrieval_document",
},
},
}

with patch('crewai_tools.adapters.crewai_rag_adapter.CrewAIRagAdapter') as mock_adapter:
mock_adapter_instance = MagicMock()
mock_adapter.return_value = mock_adapter_instance

tool = MDXSearchTool(config=config)

assert tool is not None
assert tool.name == "Search a MDX's content"
assert "semantic search" in tool.description

def test_mdx_search_tool_config_parsing_with_local_providers(self):
"""Test that the config parsing correctly handles local providers."""
tool = MDXSearchTool()

config = {
"llm": {
"provider": "ollama",
"config": {
"model": "llama3.1:8b",
"base_url": "http://localhost:11434",
},
},
"embedder": {
"provider": "ollama",
"config": {
"model": "embeddinggemma:latest",
"url": "http://localhost:11434/api/embeddings",
},
},
}

with patch('chromadb.utils.embedding_functions.ollama_embedding_function.OllamaEmbeddingFunction') as mock_ollama_func:
mock_embedding_instance = MagicMock()
mock_ollama_func.return_value = mock_embedding_instance

parsed_config = tool._parse_config(config)

assert parsed_config is not None
assert hasattr(parsed_config, 'embedding_function')
assert parsed_config.embedding_function is not None

mock_ollama_func.assert_called_once_with(
model_name="embeddinggemma:latest",
url="http://localhost:11434/api/embeddings"
)

def test_mdx_search_tool_config_parsing_with_vectordb_config(self):
"""Test that the config parsing still works with vectordb configuration."""
tool = MDXSearchTool()

config = {
"vectordb": {
"provider": "chromadb",
"config": {
"collection_name": "test_collection"
}
},
"embedding_model": {
"provider": "ollama",
"config": {
"model": "embeddinggemma:latest"
}
}
}

with patch.object(tool, '_create_embedding_function') as mock_create_embedding, \
patch.object(tool, '_create_provider_config') as mock_create_provider:

mock_embedding_func = MagicMock()
mock_create_embedding.return_value = mock_embedding_func
mock_provider_config = MagicMock()
mock_create_provider.return_value = mock_provider_config

parsed_config = tool._parse_config(config)

mock_create_embedding.assert_called_once_with(
config["embedding_model"], "chromadb"
)
mock_create_provider.assert_called_once_with(
"chromadb", {"collection_name": "test_collection"}, mock_embedding_func
)
assert parsed_config == mock_provider_config

def test_mdx_search_tool_config_parsing_with_openai_still_works(self):
"""Test that OpenAI configuration still works (backward compatibility)."""
tool = MDXSearchTool()

config = {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4",
"api_key": "test-key",
},
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
"api_key": "test-key",
},
},
}

with patch('crewai_tools.tools.rag.rag_tool.get_embedding_function') as mock_get_embedding:
mock_embedding_func = MagicMock()
mock_get_embedding.return_value = mock_embedding_func

parsed_config = tool._parse_config(config)

assert parsed_config is not None
assert hasattr(parsed_config, 'embedding_function')
assert parsed_config.embedding_function is not None

mock_get_embedding.assert_called_once()
call_args = mock_get_embedding.call_args[0][0]
assert call_args["provider"] == "openai"
assert call_args["api_key"] == "test-key"

def test_mdx_search_tool_config_parsing_none_config(self):
"""Test that None config is handled correctly."""
tool = MDXSearchTool()

parsed_config = tool._parse_config(None)
assert parsed_config is None

def test_mdx_search_tool_config_parsing_provider_in_root(self):
"""Test that config with provider in root is returned as-is."""
tool = MDXSearchTool()

config = {"provider": "test_provider", "config": {"test": "value"}}
parsed_config = tool._parse_config(config)

assert parsed_config == config

def test_mdx_search_tool_with_fixed_mdx_file(self):
"""Test MDXSearchTool with a fixed MDX file and local config."""
config = {
"llm": {
"provider": "ollama",
"config": {
"model": "llama3.1:8b",
},
},
"embedder": {
"provider": "ollama",
"config": {
"model": "embeddinggemma:latest",
},
},
}

with patch('crewai_tools.adapters.crewai_rag_adapter.CrewAIRagAdapter') as mock_adapter:
mock_adapter_instance = MagicMock()
mock_adapter.return_value = mock_adapter_instance

tool = MDXSearchTool(mdx="test.mdx", config=config)

assert tool is not None
assert "test.mdx" in tool.description
assert tool.args_schema.__name__ == "FixedMDXSearchToolSchema"
Loading
Loading