Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 10 additions & 6 deletions blockpatcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,31 +14,34 @@
FONTS_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "fonts")


class FluxBlockPatcherSampler:
class FluxBlockPatcherSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"conditioning": ("CONDITIONING", ),
"latent_image": ("LATENT", ),

"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 24, "min": 1, "max": 10000}),
"sampler": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"guidance": ("FLOAT", {"default": 3.5, "min": -10.0, "max": 10.0, "step": 0.1}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),

"blocks": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "double_blocks\.([0-9]+)\.(img|txt)_(mod|attn|mlp\.[02])\.(lin|qkv|proj)\.(weight|bias)=1.1\nsingle_blocks\.([0-9]+)\.(linear[12]|modulation\.lin)\.(weight|bias)=1.1"}),
},
"optional": {
"sigmas": ("SIGMAS",),
}
}

RETURN_TYPES = ("LATENT", "SAMPLER_PARAMS", "STRING",)
RETURN_NAMES = ("latent", "sampler_params", "patched_blocks",)
FUNCTION = "apply_style"

def apply_style(self, model, conditioning, latent_image, noise_seed, steps, sampler, scheduler, guidance, denoise, blocks):
def apply_style(self, model, conditioning, latent_image, noise_seed, steps, sampler, scheduler, guidance, denoise, blocks, sigmas=None):
# is_schnell = model.model.model_type == comfy.model_base.ModelType.FLOW

sd = model.model_state_dict()
Expand All @@ -49,9 +52,10 @@ def apply_style(self, model, conditioning, latent_image, noise_seed, steps, samp
patched_blocks = []
fbi_params = []
out_latent = None

noise = Noise_RandomNoise(noise_seed)
sigmas = BasicScheduler().get_sigmas(model, scheduler, steps, denoise)[0]
if sigmas is None:
sigmas = BasicScheduler().get_sigmas(model, scheduler, steps, denoise)[0]
cond = conditioning_set_values(conditioning, {"guidance": guidance})
sca = SamplerCustomAdvanced()
latentbatch = LatentBatch()
Expand Down