Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion deepprofiler/imaging/cropping.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def crop_graph(image_ph, boxes_ph, box_ind_ph, mask_ind_ph, box_size, mask_boxes
#crops = (crops - mean)/std
mini = tf.math.reduce_min(crops, axis=[1, 2], keepdims=True)
maxi = tf.math.reduce_max(crops, axis=[1, 2], keepdims=True)
crops = (crops - mini) / maxi
crops = (crops - mini) / (maxi - mini + tf.keras.backend.epsilon())

if export_masks:
crops = tf.concat((crops[:, :, :, 0:-1], tf.expand_dims(masks, axis=-1)), axis=3)
Expand Down Expand Up @@ -332,6 +332,15 @@ def prepare_image(self, session, image_array, meta, sample_first_crops=False):
self.input_variables["mask_ind_ph"]: mask_ind
}

# check that all boxes overlap the image
ymins = boxes[:, [0, 2]].min(axis=1)
ymaxs = boxes[:, [0, 2]].max(axis=1)
xmins = boxes[:, [1, 3]].min(axis=1)
xmaxs = boxes[:, [1, 3]].max(axis=1)
if (np.any(ymins > 1) or np.any(xmins > 1) or
np.any(ymaxs < 0) or np.any(ymaxs < 0)):
print("WARNING: Some cell boxes are entirely outside the image")

for i in range(num_targets):
tname = "target_" + str(i)
feed_dict[self.input_variables["targets_phs"][tname]] = targets[i]
Expand Down
10 changes: 10 additions & 0 deletions deepprofiler/learning/profiling.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,16 @@ def extract_features(self, key, image_array, meta): # key is a placeholder
if total_crops == 0:
print("No cells to profile:", output_file)
return

# check image size matches config
if (self.config["dataset"]["images"]["width"] != image_array.shape[1] or
self.config["dataset"]["images"]["height"] != image_array.shape[0]):
config_shape = (self.config["dataset"]["images"]["width"],
self.config["dataset"]["images"]["height"])
im_shape = (image_array.shape[1], image_array.shape[0])
raise ValueError("Loaded image shape WxH " + str(im_shape) +
" != configured image shape WxH " + str(config_shape))

repeats = self.config["train"]["model"]["crop_generator"] in ["repeat_channel_crop_generator", "individual_channel_cropgen"]

# Extract features
Expand Down