Skip to content

Commit 015af16

Browse files
authored
Merge pull request #103 from plutomonkey/notes
Use {lo,hi} instead of {L,R} where appropriate in notes module.
2 parents 505556b + 890acb4 commit 015af16

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

docs/notes.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -529,10 +529,10 @@ and compress the vectors by adding the left and the right halves
529529
separated by the variable \\(u\_k\\):
530530
\\[
531531
\begin{aligned}
532-
{\mathbf{a}}^{(k-1)} &= {\mathbf{a}}\_L \cdot u\_k + u^{-1}\_k \cdot {\mathbf{a}}\_R \\\\
533-
{\mathbf{b}}^{(k-1)} &= {\mathbf{b}}\_L \cdot u^{-1}\_k + u\_k \cdot {\mathbf{b}}\_R \\\\
534-
{\mathbf{G}}^{(k-1)} &= {\mathbf{G}}\_L \cdot u^{-1}\_k + u\_k \cdot {\mathbf{G}}\_R \\\\
535-
{\mathbf{H}}^{(k-1)} &= {\mathbf{H}}\_L \cdot u\_k + u^{-1}\_k \cdot {\mathbf{H}}\_R
532+
{\mathbf{a}}^{(k-1)} &= {\mathbf{a}}\_{\operatorname{lo}} \cdot u\_k + u^{-1}\_k \cdot {\mathbf{a}}\_{\operatorname{hi}} \\\\
533+
{\mathbf{b}}^{(k-1)} &= {\mathbf{b}}\_{\operatorname{lo}} \cdot u^{-1}\_k + u\_k \cdot {\mathbf{b}}\_{\operatorname{hi}} \\\\
534+
{\mathbf{G}}^{(k-1)} &= {\mathbf{G}}\_{\operatorname{lo}} \cdot u^{-1}\_k + u\_k \cdot {\mathbf{G}}\_{\operatorname{hi}} \\\\
535+
{\mathbf{H}}^{(k-1)} &= {\mathbf{H}}\_{\operatorname{lo}} \cdot u\_k + u^{-1}\_k \cdot {\mathbf{H}}\_{\operatorname{hi}}
536536
\end{aligned}
537537
\\]
538538
The powers of \\(u\_k\\) are chosen so they cancel out in the
@@ -546,17 +546,17 @@ Expanding it in terms of the original \\({\mathbf{a}}\\), \\({\mathbf{b}}\\),
546546
\\({\mathbf{G}}\\) and \\({\mathbf{H}}\\) gives:
547547
\\[
548548
\begin{aligned}
549-
P\_{k-1} &{}={}& &{\langle {\mathbf{a}}\_L \cdot u\_k + u\_k^{-1} \cdot {\mathbf{a}}\_R, {\mathbf{G}}\_L \cdot u^{-1}\_k + u\_k \cdot {\mathbf{G}}\_R \rangle} + \\\\
550-
&& &{\langle {\mathbf{b}}\_L \cdot u^{-1}\_k + u\_k \cdot {\mathbf{b}}\_R, {\mathbf{H}}\_L \cdot u\_k + u^{-1}\_k \cdot {\mathbf{H}}\_R \rangle} + \\\\
551-
&& &{\langle {\mathbf{a}}\_L \cdot u\_k + u^{-1}\_k \cdot {\mathbf{a}}\_R, {\mathbf{b}}\_L \cdot u^{-1}\_k + u\_k \cdot {\mathbf{b}}\_R \rangle} \cdot Q
549+
P\_{k-1} &{}={}& &{\langle {\mathbf{a}}\_{\operatorname{lo}} \cdot u\_k + u\_k^{-1} \cdot {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{G}}\_{\operatorname{lo}} \cdot u^{-1}\_k + u\_k \cdot {\mathbf{G}}\_{\operatorname{hi}} \rangle} + \\\\
550+
&& &{\langle {\mathbf{b}}\_{\operatorname{lo}} \cdot u^{-1}\_k + u\_k \cdot {\mathbf{b}}\_{\operatorname{hi}}, {\mathbf{H}}\_{\operatorname{lo}} \cdot u\_k + u^{-1}\_k \cdot {\mathbf{H}}\_{\operatorname{hi}} \rangle} + \\\\
551+
&& &{\langle {\mathbf{a}}\_{\operatorname{lo}} \cdot u\_k + u^{-1}\_k \cdot {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{b}}\_{\operatorname{lo}} \cdot u^{-1}\_k + u\_k \cdot {\mathbf{b}}\_{\operatorname{hi}} \rangle} \cdot Q
552552
\end{aligned}
553553
\\]
554554
Breaking down in simpler products:
555555
\\[
556556
\begin{aligned}
557-
P\_{k-1} &{}={}& &{\langle {\mathbf{a}}\_L, {\mathbf{G}}\_L \rangle} + {\langle {\mathbf{a}}\_R, {\mathbf{G}}\_R \rangle} &{}+{}& u\_k^2 {\langle {\mathbf{a}}\_L, {\mathbf{G}}\_R \rangle} + u^{-2}\_k {\langle {\mathbf{a}}\_R, {\mathbf{G}}\_L \rangle} + \\\\
558-
&& &{\langle {\mathbf{b}}\_L, {\mathbf{H}}\_L \rangle} + {\langle {\mathbf{b}}\_R, {\mathbf{H}}\_R \rangle} &{}+{}& u^2\_k {\langle {\mathbf{b}}\_R, {\mathbf{H}}\_L \rangle} + u^{-2}\_k {\langle {\mathbf{b}}\_L, {\mathbf{H}}\_R \rangle} + \\\\
559-
&& &({\langle {\mathbf{a}}\_L, {\mathbf{b}}\_L \rangle} + {\langle {\mathbf{a}}\_R, {\mathbf{b}}\_R \rangle})\cdot Q &{}+{}& (u^2\_k {\langle {\mathbf{a}}\_L, {\mathbf{b}}\_R \rangle} + u^{-2}\_k {\langle {\mathbf{a}}\_R, {\mathbf{b}}\_L \rangle}) \cdot Q
557+
P\_{k-1} &{}={}& &{\langle {\mathbf{a}}\_{\operatorname{lo}}, {\mathbf{G}}\_{\operatorname{lo}} \rangle} + {\langle {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{G}}\_{\operatorname{hi}} \rangle} &{}+{}& u\_k^2 {\langle {\mathbf{a}}\_{\operatorname{lo}}, {\mathbf{G}}\_{\operatorname{hi}} \rangle} + u^{-2}\_k {\langle {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{G}}\_{\operatorname{lo}} \rangle} + \\\\
558+
&& &{\langle {\mathbf{b}}\_{\operatorname{lo}}, {\mathbf{H}}\_{\operatorname{lo}} \rangle} + {\langle {\mathbf{b}}\_{\operatorname{hi}}, {\mathbf{H}}\_{\operatorname{hi}} \rangle} &{}+{}& u^2\_k {\langle {\mathbf{b}}\_{\operatorname{hi}}, {\mathbf{H}}\_{\operatorname{lo}} \rangle} + u^{-2}\_k {\langle {\mathbf{b}}\_{\operatorname{lo}}, {\mathbf{H}}\_{\operatorname{hi}} \rangle} + \\\\
559+
&& &({\langle {\mathbf{a}}\_{\operatorname{lo}}, {\mathbf{b}}\_{\operatorname{lo}} \rangle} + {\langle {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{b}}\_{\operatorname{hi}} \rangle})\cdot Q &{}+{}& (u^2\_k {\langle {\mathbf{a}}\_{\operatorname{lo}}, {\mathbf{b}}\_{\operatorname{hi}} \rangle} + u^{-2}\_k {\langle {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{b}}\_{\operatorname{lo}} \rangle}) \cdot Q
560560
\end{aligned}
561561
\\]
562562
We now see that the left two columns in the above equation is the
@@ -566,8 +566,8 @@ terms with \\(u^2\_k\\) as \\(L\_k\\) and all terms with \\(u^{-2}\_k\\) as \\(R
566566
\\[
567567
\begin{aligned}
568568
P\_{k-1} &= P\_k + u^2\_k \cdot L\_k + u^{-2}\_k \cdot R\_k\\\\
569-
L\_k &= {\langle {\mathbf{a}}\_L, {\mathbf{G}}\_R \rangle} + {\langle {\mathbf{b}}\_R, {\mathbf{H}}\_L \rangle} + {\langle {\mathbf{a}}\_L, {\mathbf{b}}\_R \rangle} \cdot Q\\\\
570-
R\_k &= {\langle {\mathbf{a}}\_R, {\mathbf{G}}\_L \rangle} + {\langle {\mathbf{b}}\_L, {\mathbf{H}}\_R \rangle} + {\langle {\mathbf{a}}\_R, {\mathbf{b}}\_L \rangle} \cdot Q
569+
L\_k &= {\langle {\mathbf{a}}\_{\operatorname{lo}}, {\mathbf{G}}\_{\operatorname{hi}} \rangle} + {\langle {\mathbf{b}}\_{\operatorname{hi}}, {\mathbf{H}}\_{\operatorname{lo}} \rangle} + {\langle {\mathbf{a}}\_{\operatorname{lo}}, {\mathbf{b}}\_{\operatorname{hi}} \rangle} \cdot Q\\\\
570+
R\_k &= {\langle {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{G}}\_{\operatorname{lo}} \rangle} + {\langle {\mathbf{b}}\_{\operatorname{lo}}, {\mathbf{H}}\_{\operatorname{hi}} \rangle} + {\langle {\mathbf{a}}\_{\operatorname{hi}}, {\mathbf{b}}\_{\operatorname{lo}} \rangle} \cdot Q
571571
\end{aligned}
572572
\\]
573573
If the prover commits to \\(L\_k\\) and \\(R\_k\\) before \\(u\_k\\) is randomly

0 commit comments

Comments
 (0)