Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
290 changes: 290 additions & 0 deletions integrations/valyu.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,290 @@
---
layout: integration
name: Valyu Search
description: Search and content extraction components using Valyu's API for web and proprietary sources
authors:
- name: Valyu
socials:
github: valyu-network
pypi: https://pypi.org/project/valyu-search-haystack
repo: https://github.com/valyu-network/valyu-search-haystack
type: Search & Content Extraction
report_issue: https://github.com/valyu-network/valyu-search-haystack/issues
version: Haystack 2.0
toc: true
---

### Table of Contents

- [Overview](#overview)
- [Installation](#installation)
- [Usage](#usage)
- [ValyuSearch](#valyusearch)
- [ValyuContentFetcher](#valyucontentfetcher)
- [Pipeline Examples](#pipeline-examples)
- [Advanced Configuration](#advanced-configuration)
- [API Integration Details](#api-integration-details)
- [Authentication](#authentication)
- [License](#license)

## Overview

[![PyPI - Version](https://img.shields.io/pypi/v/valyu-search-haystack.svg)](https://pypi.org/project/valyu-search-haystack)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/valyu-search-haystack.svg)](https://pypi.org/project/valyu-search-haystack)

Haystack components for integrating Valyu's powerful search and content extraction APIs into your Haystack pipelines.

This package provides two main components:

- **`ValyuSearch`** - Search component that queries the Valyu DeepSearch API and returns documents with content already included
- **`ValyuContentFetcher`** - Content extraction component that fetches and cleans content from URLs

**Key Features:**

- Search across web and proprietary sources
- Full content included in search results
- AI-powered content extraction and summarization

---

## Installation

Use `pip` to install Valyu Search for Haystack:

```console
pip install valyu-search-haystack
```

Or install from source:

```console
pip install -e .
```

**Requirements:**

- Python 3.8+
- haystack-ai >= 2.0.0
- valyu >= 2.2.1

## Usage

Set your Valyu API key as an environment variable:

```bash
export VALYU_API_KEY="your-api-key"
```

### ValyuSearch

The `ValyuSearch` component integrates with the Valyu DeepSearch API. Unlike many search APIs, Valyu returns full content by default, making it ideal for RAG pipelines.

**Basic Usage:**

```python
from valyu_haystack import ValyuSearch
from haystack import Pipeline

# Create a search component (API key from VALYU_API_KEY env var)
search = ValyuSearch(
top_k=5,
search_type="all", # "web", "proprietary", or "all"
relevance_threshold=0.5
)

# Create and run a pipeline
pipeline = Pipeline()
pipeline.add_component("search", search)

result = pipeline.run({"search": {"query": "What is Haystack AI?"}})
documents = result["search"]["documents"]
links = result["search"]["links"]
```

**Component Parameters:**

- `api_key` (Secret): Your Valyu API key. Defaults to `VALYU_API_KEY` environment variable
- `top_k` (int, default=10): Maximum number of results to return
- `api_base_url` (str): Base URL for the Valyu API
- `search_type` (Literal["web", "proprietary", "all"], default="all"): Type of search
- `relevance_threshold` (float, default=0.5): Minimum relevance score (0.0-1.0)
- `max_price` (int, default=100): Maximum price per thousand queries in cents

**Output:**

- `documents` (List[Document]): Documents with content and rich metadata
- `links` (List[str]): List of URLs from search results

**Metadata included:**

- `title`: Page title
- `url`: Source URL
- `description`: Page description
- `source`: Data source identifier
- `relevance_score`: Relevance score (0.0-1.0)
- `price`: Cost of this result
- `length`: Content length in characters
- `data_type`: Type of data ("structured" or "unstructured")
- `image_url`: Associated image URL (if any)

### ValyuContentFetcher

The `ValyuContentFetcher` component extracts clean, readable content from URLs using the Valyu Contents API. It supports batch processing and AI-powered summarization.

**Basic Usage:**

```python
from valyu_haystack import ValyuContentFetcher
from haystack import Pipeline

# Create a content fetcher component
fetcher = ValyuContentFetcher(
extract_effort="normal", # "normal", "high", or "auto"
response_length="short", # "short", "medium", "large", "max", or int
summary=True # Enable AI summarization
)

# Create and run a pipeline
pipeline = Pipeline()
pipeline.add_component("fetcher", fetcher)

urls = ["https://example.com/article1", "https://example.com/article2"]
result = pipeline.run({"fetcher": {"urls": urls}})
documents = result["fetcher"]["documents"]
```

**Component Parameters:**

- `api_key` (Secret): Your Valyu API key. Defaults to `VALYU_API_KEY` environment variable
- `api_base_url` (str): Base URL for the Valyu API
- `timeout` (int, default=30): Request timeout in seconds
- `extract_effort` (Literal["normal", "high", "auto"], optional): Extraction thoroughness
- `response_length` (Union[Literal["short", "medium", "large", "max"], int], optional): Content length per URL
- `summary` (Union[bool, str, Dict], optional): AI summary config
- `False` or `None`: No AI processing (raw content)
- `True`: Basic automatic summarization
- `str`: Custom instructions (max 500 chars)
- `dict`: JSON schema for structured extraction

**Input:**

- `urls` (List[str], optional): List of URLs to fetch
- `documents` (List[Document], optional): Documents with URLs in metadata

**Output:**

- `documents` (List[Document]): Documents with extracted content

**Metadata included:**

- `url`: Source URL
- `title`: Page title
- `length`: Content length in characters
- `source`: Data source identifier
- `data_type`: Type of content

### Pipeline Examples

**RAG Pipeline with Search and Chat:**

```python
from haystack import Pipeline
from haystack.utils import Secret
from haystack.components.builders.chat_prompt_builder import ChatPromptBuilder
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from valyu_haystack import ValyuSearch

# Create components
web_search = ValyuSearch(top_k=3)

prompt_template = [
ChatMessage.from_system("You are a helpful assistant."),
ChatMessage.from_user(
"Given the information below:\n"
"{% for document in documents %}{{ document.content }}{% endfor %}\n"
"Answer question: {{ query }}.\nAnswer:"
)
]

prompt_builder = ChatPromptBuilder(template=prompt_template, required_variables={"query", "documents"})
llm = OpenAIChatGenerator(api_key=Secret.from_env_var("OPENAI_API_KEY"), model="gpt-3.5-turbo")

# Build pipeline
pipe = Pipeline()
pipe.add_component("search", web_search)
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("llm", llm)

# Connect components
pipe.connect("search.documents", "prompt_builder.documents")
pipe.connect("prompt_builder.messages", "llm.messages")

# Run pipeline
query = "What is the most famous landmark in Berlin?"
result = pipe.run(data={"search": {"query": query}, "prompt_builder": {"query": query}})
```

**Indexing Pipeline with Content Fetcher:**

```python
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.writers import DocumentWriter
from valyu_haystack import ValyuContentFetcher

# Create components
document_store = InMemoryDocumentStore()
fetcher = ValyuContentFetcher()
writer = DocumentWriter(document_store=document_store)

# Build indexing pipeline
indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=fetcher, name="fetcher")
indexing_pipeline.add_component(instance=writer, name="writer")

# Connect components
indexing_pipeline.connect("fetcher.documents", "writer.documents")

# Run pipeline
indexing_pipeline.run(data={
"fetcher": {"urls": ["https://haystack.deepset.ai/blog/guide-to-using-zephyr-with-haystack2"]}
})
```

### Advanced Configuration

**Structured data extraction with Content Fetcher:**

```python
from valyu_haystack import ValyuContentFetcher

# Define JSON schema for structured extraction
schema = {
"type": "object",
"properties": {
"title": {"type": "string"},
"author": {"type": "string"},
"published_date": {"type": "string"},
"summary": {"type": "string"}
}
}

fetcher = ValyuContentFetcher(summary=schema)
result = fetcher.run(urls=["https://example.com/article"])

# Extracted structured data will be in document metadata
```

## API Integration Details

### Authentication

Both components use Haystack's `Secret` class for secure API key management:

- Header: `x-api-key: your-api-key`
- Environment variable: `VALYU_API_KEY`

### License

`valyu-search-haystack` is distributed under the terms of the [Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) license.