Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
274 changes: 274 additions & 0 deletions integrations/openstreetmap.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
---
layout: integration
name: OpenStreetMap
description: Haystack component to fetch geographic data via the freely available OpenStreetMap (OSM) Overpass API.
authors:
- name: Wyatt Wei
socials:
github: grexrr
twitter: grexrr_w
linkedin: https://www.linkedin.com/in/wyatt-wei-89052341/
pypi: https://pypi.org/project/osm-integration-haystack/
repo: https://github.com/grexrr/osm-integration-haystack
report_issue: https://github.com/grexrr/osm-integration-haystack/issues
type: Data Integration
toc: true (optional)
logo: /logos/osm_logo.png
version: Haystack 2.0
---

**Table of Contents**

- [Installation](#Installation)
- [Overview](#Overview)
- [Basic Usage](#Basic_Usage)
- [Configuration Parameters](#Configuration_Parameters)
- [Examples](#Examples)
- [API Rate Limitations](#API_Rate_Limitations)
- [License](#License)

## Installation

```console
pip install osm-integration-haystack
```

## Overview

This repository implements a Haystack component that integrates with OpenStreetMap data through the Overpass API. It allows you to fetch geographic information and convert it into Haystack Documents for use in RAG (Retrieval-Augmented Generation) pipelines.

When you give `OSMFetcher` a location and radius, it returns a list of nearby points of interest (POIs) as Haystack Documents. It uses the Overpass API to query OpenStreetMap data and converts the results into structured documents with geographic metadata.

## Basic Usage

Here's a simple example of how to use the `OSMFetcher` component:

```python
from osm_integration_haystack import OSMFetcher

# Create an instance of OSMFetcher
osm_fetcher = OSMFetcher(
preset_center=(51.898403, -8.473978), # Cork, Ireland
preset_radius_m=500, # 500m radius
target_osm_types=["node"], # Search nodes
target_osm_tags=["amenity"], # Search amenity types
maximum_query_mb=2, # Limit query size
overpass_timeout=20
)

# Fetch nearby locations
results = osm_fetcher.run()

# Access the documents
documents = results["documents"]

print("Found locations:")
for doc in documents[:5]: # Show first 5
print(f"Name: {doc.meta.get('name', 'Unknown')}")
print(f"Type: {doc.meta.get('category', 'Unknown')}")
print(f"Distance: {doc.meta.get('distance_m', 0):.1f}m")
print(f"Content: {doc.content}")
print("\n")
```

### Haystack Pipeline Integration

You can also integrate `OSMFetcher` into a complete Haystack pipeline:

```python
from haystack import Pipeline
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack.utils import Secret
from osm_integration_haystack import OSMFetcher

# Create pipeline components
osm_fetcher = OSMFetcher(
preset_center=(51.898403, -8.473978),
preset_radius_m=200,
target_osm_types=["node"],
target_osm_tags=["amenity"],
maximum_query_mb=2,
overpass_timeout=20
)

prompt_builder = PromptBuilder(template="""
You are a geographic information assistant. Based on the provided OpenStreetMap data, help me find the nearest coffee shops.

User location: {{ user_location }}
Search radius: {{ radius }}m

Available location data:
{% for document in documents[:10] %}
- {{ document.content }}
Location: ({{ document.meta.lat }}, {{ document.meta.lon }})
Distance: {{ document.meta.distance_m }}m
Type: {{ document.meta.category }}
{% endfor %}

Please help me find coffee shop related locations and recommend the nearest 3.
""")

llm_generator = OpenAIGenerator(
api_key=Secret.from_env_var("OPENAI_API_KEY"),
model="gpt-4-turbo"
)

# Create and connect pipeline
pipeline = Pipeline()
pipeline.add_component("osm_fetcher", osm_fetcher)
pipeline.add_component("prompt_builder", prompt_builder)
pipeline.add_component("llm_generator", llm_generator)

pipeline.connect("osm_fetcher.documents", "prompt_builder.documents")
pipeline.connect("prompt_builder.prompt", "llm_generator.prompt")

# Run the pipeline
result = pipeline.run({
"osm_fetcher": {},
"prompt_builder": {
"user_location": "Cork, Ireland (51.898403, -8.473978)",
"radius": 200
}
})

print(result["llm_generator"]["replies"][0])
```

### GeoRadiusFilter

The `GeoRadiusFilter` component provides additional geographic filtering capabilities for OSM documents. It's designed to help agents decide whether to perform further filtering based on distance criteria.

```python
from osm_integration_haystack import OSMFetcher
from osm_integration_haystack.utils import GeoRadiusFilter

# First, fetch OSM data
osm_fetcher = OSMFetcher(
preset_center=(51.898403, -8.473978),
preset_radius_m=1000, # Large initial radius
target_osm_types=["node"],
target_osm_tags=["amenity"]
)

# Get all nearby locations
results = osm_fetcher.run()
all_documents = results["documents"]

# Then apply additional radius filtering
geo_filter = GeoRadiusFilter(max_radius_m=500) # Limit to 500m

filtered_results = geo_filter.run(
documents=all_documents,
center=(51.898403, -8.473978), # Same center
radius_m=300 # Filter to 300m radius
)

filtered_documents = filtered_results["documents"]
print(f"Filtered from {len(all_documents)} to {len(filtered_documents)} documents")
```

**Use Cases:**
- **Agent Decision Making**: Help AI agents decide whether to apply additional geographic filtering
- **Multi-stage Filtering**: First fetch a large area, then filter to smaller specific regions
- **Dynamic Radius Adjustment**: Allow agents to adjust search radius based on initial results
- **Distance-based Ranking**: Ensure all returned documents are within a specific distance threshold

**Configuration Parameters:**
- `max_radius_m (int)`: Maximum allowed radius in meters (default: 5000)
- `center (Tuple[float, float])`: Center coordinates for distance calculation
- `radius_m (int)`: Target radius for filtering

**Features:**
- **Distance Calculation**: Uses Haversine formula for accurate geographic distance
- **Automatic Sorting**: Returns documents sorted by distance from center
- **Validation**: Validates coordinate ranges and radius values
- **Flexible Input**: Works with any list of Haystack Documents containing lat/lon metadata


## Configuration Parameters

The `OSMFetcher` component accepts several parameters to customize its behavior:

- `preset_center (Tuple[float, float], optional)`: Default center coordinates (latitude, longitude).
- `preset_radius_m (int, optional)`: Default search radius in meters.
- `target_osm_types (Union[str, List[str]], optional)`: OSM element types to search ("node", "way", "relation"). Default: ["node", "way", "relation"].
- `target_osm_tags (Union[str, List[str]], optional)`: OSM tags to filter by (e.g., ["amenity", "shop"]). Default: None (all tags).
- `maximum_query_mb (int, optional)`: Maximum query size in MB to prevent API timeouts. Default: 5.
- `overpass_timeout (int, optional)`: Timeout for Overpass API requests in seconds. Default: 25.

### Document Structure

Each returned document contains:

- `content`: Human-readable description of the location
- `meta`: Geographic and OSM metadata including:
- `lat`, `lon`: Coordinates
- `distance_m`: Distance from search center
- `osm_id`: OSM element ID
- `osm_type`: OSM element type
- `name`: Location name
- `category`: Primary category
- `address`: Address information (if available)
- `tags`: Additional OSM tags

## Examples

### Coffee Shop Finder

Find nearby coffee shops and restaurants. You can run the example directly:

```bash
python examples/agent_osm_demo.py
```

The script will prompt you to choose between:
1. **Full version** (requires OpenAI API key in .env) - Uses Haystack pipeline with LLM
2. **Simplified version** (no API key needed) - Direct results display

```python
# Search for coffee shops
coffee_fetcher = OSMFetcher(
preset_center=(51.898403, -8.473978),
preset_radius_m=500,
target_osm_types=["node"],
target_osm_tags=["amenity"],
maximum_query_mb=2
)

results = coffee_fetcher.run()
documents = results["documents"]

# Filter for coffee-related locations
coffee_keywords = ["cafe", "coffee", "restaurant", "bar", "pub", "food"]
coffee_related = []

for doc in documents:
content_lower = doc.content.lower()
category_lower = doc.meta.get("category", "").lower()

if any(keyword in content_lower or keyword in category_lower
for keyword in coffee_keywords):
coffee_related.append(doc)

# Display results
for i, doc in enumerate(coffee_related[:5]):
print(f"{i+1}. {doc.meta.get('name', 'Unknown')}")
print(f" Type: {doc.meta.get('category', 'Unknown')}")
print(f" Distance: {doc.meta.get('distance_m', 0):.1f}m")
```

## API Rate Limitations

The Overpass API has rate limitations to prevent abuse. If you encounter rate limiting:

- Reduce query frequency
- Use smaller search radii
- Limit `maximum_query_mb` parameter
- Implement retry logic with exponential backoff

For production use, consider using a commercial OSM data provider or hosting your own Overpass instance.

## License

`osm-integration-haystack` is distributed under the terms of the [MIT](https://spdx.org/licenses/MIT.html) license.
Binary file added logos/osm_logo.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.