You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
bug: fix embedding_dim mismatch in DocumentStore (#3183)
* match index dim with embed dim (#3090)
* aligned messages across all docstores
* aligned messages across all docstores (#3090)
* aligned messages across all docstores (#3090)
"The number of embeddings does not match the number of documents in the batch "
1485
+
f"({len(embeddings)} != {len(document_batch)})"
1486
+
)
1484
1487
ifembeddings[0].shape[0] !=self.embedding_dim:
1485
1488
raiseRuntimeError(
1486
-
f"Embedding dim. of model ({embeddings[0].shape[0]})"
1487
-
f" doesn't match embedding dim. in DocumentStore ({self.embedding_dim})."
1488
-
"Specify the arg `embedding_dim` when initializing ElasticsearchDocumentStore()"
1489
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate ElasticsearchDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
"The number of embeddings does not match the number of documents in the batch "
368
+
f"({len(embeddings)} != {len(document_batch)})"
369
+
)
370
+
ifembeddings[0].shape[0] !=self.embedding_dim:
371
+
raiseRuntimeError(
372
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate FAISSDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
"The number of embeddings does not match the number of documents in the batch "
465
465
f"({len(embeddings)} != {len(document_batch)})"
466
466
)
467
467
ifembeddings[0].shape[0] !=self.embedding_dim:
468
468
raiseRuntimeError(
469
-
f"Embedding dim. of model ({embeddings[0].shape[0]})"
470
-
f" doesn't match embedding dim. in DocumentStore ({self.embedding_dim})."
471
-
"Specify the arg `embedding_dim` when initializing InMemoryDocumentStore()"
469
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate InMemoryDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
"The number of embeddings does not match the number of documents in the batch "
341
+
f"({len(embeddings)} != {len(document_batch)})"
342
+
)
343
+
ifembeddings[0].shape[0] !=self.embedding_dim:
344
+
raiseRuntimeError(
345
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate MilvusDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
"The number of embeddings does not match the number of documents in the batch "
376
+
f"({len(embeddings)} != {len(document_batch)})"
377
+
)
378
+
ifembeddings[0].shape[0] !=self.embedding_dim:
379
+
raiseRuntimeError(
380
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate MilvusDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
"The number of embeddings does not match the number of documents in the batch "
496
+
f"({len(embeddings)} != {len(document_batch)})"
497
+
)
498
+
ifembeddings[0].shape[0] !=self.embedding_dim:
499
+
raiseRuntimeError(
500
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate PineconeDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
"The number of embeddings does not match the number of documents in the batch "
1234
+
f"({len(embeddings)} != {len(document_batch)})"
1235
+
)
1233
1236
ifembeddings[0].shape[0] !=self.embedding_dim:
1234
1237
raiseRuntimeError(
1235
-
f"Embedding dim. of model ({embeddings[0].shape[0]})"
1236
-
f" doesn't match embedding dim. in DocumentStore ({self.embedding_dim})."
1237
-
"Specify the arg `embedding_dim` when initializing WeaviateDocumentStore()"
1238
+
f"Embedding dimensions of the model ({embeddings[0].shape[0]}) doesn't match the embedding dimensions of the document store ({self.embedding_dim}). Please reinitiate WeaviateDocumentStore() with arg embedding_dim={embeddings[0].shape[0]}."
1238
1239
)
1240
+
1239
1241
fordoc, embinzip(document_batch, embeddings):
1240
1242
# Using update method to only update the embeddings, other properties will be in tact
0 commit comments