|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from collections.abc import Iterable |
| 4 | +from concurrent.futures import ThreadPoolExecutor |
| 5 | +from pathlib import Path |
| 6 | +from typing import Optional, Union, Any |
| 7 | + |
| 8 | +from PIL import Image |
| 9 | + |
| 10 | +from PIL.ImageOps import crop |
| 11 | +from docling_core.types.doc import ( |
| 12 | + DoclingDocument, |
| 13 | + NodeItem, |
| 14 | + PageItem, |
| 15 | + TextItem, |
| 16 | +) |
| 17 | +from docling_core.types.doc import ImageRefMode |
| 18 | +from docling.utils.profiling import ProfilingScope, TimeRecorder |
| 19 | +from docling.utils.utils import chunkify |
| 20 | +from docling_core.types.doc.document import ContentLayer, DocItem, GraphCell, KeyValueItem, PictureItem, TableCell, RichTableCell, TableItem |
| 21 | +from pydantic import BaseModel, ConfigDict |
| 22 | +from docling.backend.json.docling_json_backend import DoclingJSONBackend |
| 23 | +from docling.datamodel.accelerator_options import AcceleratorOptions |
| 24 | +from docling.datamodel.base_models import InputFormat, ItemAndImageEnrichmentElement |
| 25 | +from docling.datamodel.document import ConversionResult |
| 26 | +from docling.datamodel.pipeline_options import ConvertPipelineOptions, PictureDescriptionApiOptions, PdfPipelineOptions |
| 27 | +from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption |
| 28 | +from docling.pipeline.simple_pipeline import SimplePipeline |
| 29 | +from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline |
| 30 | +from docling.exceptions import OperationNotAllowed |
| 31 | +from docling.models.base_model import BaseModelWithOptions, GenericEnrichmentModel |
| 32 | +from docling.utils.api_image_request import api_image_request |
| 33 | + |
| 34 | +# Example on how to apply to Docling Document OCR as a post-processing with "nanonets-ocr2-3b" via LM Studio |
| 35 | +# Requires LM Studio running inference server with "nanonets-ocr2-3b" model pre-loaded |
| 36 | +LM_STUDIO_URL = "http://localhost:1234/v1/chat/completions" |
| 37 | +LM_STUDIO_MODEL = "nanonets-ocr2-3b" |
| 38 | +DEFAULT_PROMPT = "Extract the text from the above document as if you were reading it naturally." |
| 39 | + |
| 40 | +PDF_DOC = "tests/data/pdf/2305.03393v1-pg9.pdf" |
| 41 | +# PDF_DOC = "tests/data/pdf/amt_handbook_sample.pdf" |
| 42 | +# PDF_DOC = "tests/data/pdf/2206.01062.pdf" |
| 43 | +JSON_DOC = "scratch/test_doc.json" |
| 44 | +POST_PROCESSED_JSON_DOC = "scratch/test_doc_ocr.json" |
| 45 | + |
| 46 | +class OcrEnrichmentElement(BaseModel): |
| 47 | + model_config = ConfigDict(arbitrary_types_allowed=True) |
| 48 | + |
| 49 | + item: Union[DocItem, TableCell, RichTableCell, GraphCell] |
| 50 | + image: Image # TODO maybe needs to be an array of images for multi-provenance things. |
| 51 | + |
| 52 | + |
| 53 | +class OcrEnrichmentPipelineOptions(ConvertPipelineOptions): |
| 54 | + api_options: PictureDescriptionApiOptions |
| 55 | + |
| 56 | +class OcrEnrichmentPipeline(SimplePipeline): |
| 57 | + def __init__(self, pipeline_options: OcrEnrichmentPipelineOptions): |
| 58 | + super().__init__(pipeline_options) |
| 59 | + self.pipeline_options: OcrEnrichmentPipelineOptions |
| 60 | + |
| 61 | + self.enrichment_pipe = [ |
| 62 | + OcrApiEnrichmentModel( |
| 63 | + enabled=True, |
| 64 | + enable_remote_services=True, |
| 65 | + artifacts_path=None, |
| 66 | + options=self.pipeline_options.api_options, |
| 67 | + accelerator_options=AcceleratorOptions(), |
| 68 | + ) |
| 69 | + ] |
| 70 | + |
| 71 | + @classmethod |
| 72 | + def get_default_options(cls) -> OcrEnrichmentPipelineOptions: |
| 73 | + return OcrEnrichmentPipelineOptions() |
| 74 | + |
| 75 | + def _enrich_document(self, conv_res: ConversionResult) -> ConversionResult: |
| 76 | + def _prepare_elements( |
| 77 | + conv_res: ConversionResult, model: GenericEnrichmentModel[Any] |
| 78 | + ) -> Iterable[NodeItem]: |
| 79 | + for doc_element, _level in conv_res.document.iterate_items( |
| 80 | + traverse_pictures=True, |
| 81 | + included_content_layers={ |
| 82 | + ContentLayer.BODY, |
| 83 | + ContentLayer.FURNITURE, |
| 84 | + }, |
| 85 | + ): # With all content layers, with traverse_pictures=True |
| 86 | + prepared_elements = model.prepare_element( # make this one yield multiple items. |
| 87 | + conv_res=conv_res, element=doc_element |
| 88 | + ) |
| 89 | + if prepared_elements is not None: |
| 90 | + yield prepared_elements |
| 91 | + |
| 92 | + with TimeRecorder(conv_res, "doc_enrich", scope=ProfilingScope.DOCUMENT): |
| 93 | + for model in self.enrichment_pipe: |
| 94 | + for element_batch in chunkify( |
| 95 | + _prepare_elements(conv_res, model), |
| 96 | + model.elements_batch_size, |
| 97 | + ): |
| 98 | + for element in model( |
| 99 | + doc=conv_res.document, element_batch=element_batch |
| 100 | + ): # Must exhaust! |
| 101 | + pass |
| 102 | + return conv_res |
| 103 | + |
| 104 | +class OcrApiEnrichmentModel(GenericEnrichmentModel[OcrEnrichmentElement], BaseModelWithOptions): |
| 105 | + expansion_factor: float = 0.001 |
| 106 | + |
| 107 | + def prepare_element( |
| 108 | + self, conv_res: ConversionResult, element: NodeItem |
| 109 | + ) -> Optional[list[OcrEnrichmentElement]]: |
| 110 | + if not self.is_processable(doc=conv_res.document, element=element): |
| 111 | + return None |
| 112 | + |
| 113 | + # allowed = (DocItem, TableCell, RichTableCell, GraphCell) |
| 114 | + allowed = (DocItem, TableItem, GraphCell) |
| 115 | + assert isinstance(element, allowed) # too strict, could be DocItem, TableCell, RichTableCell, GraphCell |
| 116 | + |
| 117 | + |
| 118 | + if isinstance(element, KeyValueItem): |
| 119 | + # Yield from the graphCells inside here. |
| 120 | + result = [] |
| 121 | + for c in element.graph.cells: |
| 122 | + element_prov = c.prov # Key / Value have only one provenance! |
| 123 | + bbox = element_prov.bbox |
| 124 | + page_ix = element_prov.page_no |
| 125 | + bbox = bbox.scale_to_size(old_size=conv_res.document.pages[page_ix].size, new_size=conv_res.document.pages[page_ix].image.size) |
| 126 | + expanded_bbox = bbox.expand_by_scale( |
| 127 | + x_scale=self.expansion_factor, y_scale=self.expansion_factor |
| 128 | + ).to_top_left_origin(page_height=conv_res.document.pages[page_ix].image.size.height) |
| 129 | + |
| 130 | + good_bbox = True |
| 131 | + if expanded_bbox.l > expanded_bbox.r or expanded_bbox.t > expanded_bbox.b: |
| 132 | + good_bbox = False |
| 133 | + |
| 134 | + if good_bbox: |
| 135 | + cropped_image = conv_res.document.pages[page_ix].image.pil_image.crop(expanded_bbox.as_tuple()) |
| 136 | + # cropped_image.show() |
| 137 | + result.append(OcrEnrichmentElement(item=c, image=cropped_image)) |
| 138 | + return result |
| 139 | + elif isinstance(element, TableItem): |
| 140 | + element_prov = element.prov[0] |
| 141 | + page_ix = element_prov.page_no |
| 142 | + result = [] |
| 143 | + for i, row in enumerate(element.data.grid): |
| 144 | + for j, cell in enumerate(row): |
| 145 | + if hasattr(cell, "bbox"): |
| 146 | + if cell.bbox: |
| 147 | + bbox = cell.bbox |
| 148 | + bbox = bbox.scale_to_size(old_size=conv_res.document.pages[page_ix].size, new_size=conv_res.document.pages[page_ix].image.size) |
| 149 | + expanded_bbox = bbox.expand_by_scale( |
| 150 | + x_scale=self.expansion_factor, y_scale=self.expansion_factor |
| 151 | + ).to_top_left_origin(page_height=conv_res.document.pages[page_ix].image.size.height) |
| 152 | + |
| 153 | + good_bbox = True |
| 154 | + if expanded_bbox.l > expanded_bbox.r or expanded_bbox.t > expanded_bbox.b: |
| 155 | + good_bbox = False |
| 156 | + |
| 157 | + if good_bbox: |
| 158 | + cropped_image = conv_res.document.pages[page_ix].image.pil_image.crop(expanded_bbox.as_tuple()) |
| 159 | + # cropped_image.show() |
| 160 | + result.append(OcrEnrichmentElement(item=cell, image=cropped_image)) |
| 161 | + return result |
| 162 | + else: |
| 163 | + # Crop the image form the page |
| 164 | + element_prov = element.prov[0] # TODO: Not all items have prov |
| 165 | + bbox = element_prov.bbox |
| 166 | + |
| 167 | + page_ix = element_prov.page_no |
| 168 | + bbox = bbox.scale_to_size(old_size=conv_res.document.pages[page_ix].size, new_size=conv_res.document.pages[page_ix].image.size) |
| 169 | + expanded_bbox = bbox.expand_by_scale( |
| 170 | + x_scale=self.expansion_factor, y_scale=self.expansion_factor |
| 171 | + ).to_top_left_origin(page_height=conv_res.document.pages[page_ix].image.size.height) |
| 172 | + |
| 173 | + good_bbox = True |
| 174 | + if expanded_bbox.l > expanded_bbox.r or expanded_bbox.t > expanded_bbox.b: |
| 175 | + good_bbox = False |
| 176 | + |
| 177 | + if good_bbox: |
| 178 | + cropped_image = conv_res.document.pages[page_ix].image.pil_image.crop(expanded_bbox.as_tuple()) |
| 179 | + cropped_image.show() |
| 180 | + # Return the proper cropped image |
| 181 | + return [OcrEnrichmentElement(item=element, image=cropped_image)] |
| 182 | + else: |
| 183 | + return [] |
| 184 | + |
| 185 | + @classmethod |
| 186 | + def get_options_type(cls) -> type[PictureDescriptionApiOptions]: |
| 187 | + return PictureDescriptionApiOptions |
| 188 | + |
| 189 | + def __init__( |
| 190 | + self, |
| 191 | + *, |
| 192 | + enabled: bool, |
| 193 | + enable_remote_services: bool, |
| 194 | + artifacts_path: Optional[Union[Path, str]], |
| 195 | + options: PictureDescriptionApiOptions, |
| 196 | + accelerator_options: AcceleratorOptions, |
| 197 | + ): |
| 198 | + self.enabled = enabled |
| 199 | + self.options = options |
| 200 | + self.concurrency = 4 |
| 201 | + self.expansion_factor = 0.05 |
| 202 | + self.elements_batch_size = 4 |
| 203 | + self._accelerator_options = accelerator_options |
| 204 | + self._artifacts_path = ( |
| 205 | + Path(artifacts_path) if isinstance(artifacts_path, str) else artifacts_path |
| 206 | + ) |
| 207 | + |
| 208 | + if self.enabled and not enable_remote_services: |
| 209 | + raise OperationNotAllowed( |
| 210 | + "Enable remote services by setting pipeline_options.enable_remote_services=True." |
| 211 | + ) |
| 212 | + |
| 213 | + def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool: |
| 214 | + return self.enabled |
| 215 | + |
| 216 | + def _annotate_images(self, images: Iterable[Image.Image]) -> Iterable[str]: |
| 217 | + def _api_request(image: Image.Image) -> str: |
| 218 | + return api_image_request( |
| 219 | + image=image, |
| 220 | + prompt=self.options.prompt, |
| 221 | + url=self.options.url, |
| 222 | + timeout=self.options.timeout, |
| 223 | + headers=self.options.headers, |
| 224 | + **self.options.params, |
| 225 | + ) |
| 226 | + |
| 227 | + with ThreadPoolExecutor(max_workers=self.concurrency) as executor: |
| 228 | + yield from executor.map(_api_request, images) |
| 229 | + |
| 230 | + def __call__( |
| 231 | + self, |
| 232 | + doc: DoclingDocument, |
| 233 | + element_batch: Iterable[ItemAndImageEnrichmentElement], |
| 234 | + ) -> Iterable[NodeItem]: |
| 235 | + if not self.enabled: |
| 236 | + for element in element_batch: |
| 237 | + yield element.item |
| 238 | + return |
| 239 | + |
| 240 | + elements: list[TextItem] = [] |
| 241 | + images: list[Image.Image] = [] |
| 242 | + for element_stack in element_batch: |
| 243 | + for element in element_stack: |
| 244 | + allowed = (DocItem, TableCell, RichTableCell, GraphCell) |
| 245 | + assert isinstance(element.item, allowed) |
| 246 | + elements.append(element.item) |
| 247 | + images.append(element.image) |
| 248 | + |
| 249 | + if not images: |
| 250 | + return |
| 251 | + |
| 252 | + outputs = list(self._annotate_images(images)) |
| 253 | + |
| 254 | + for item, output in zip(elements, outputs): |
| 255 | + # Sometimes model can return html tags, which are not strictly needed in our, so it's better to clean them |
| 256 | + def clean_html_tags(text): |
| 257 | + for tag in ["<table>", "<tr>", "<td>", "<strong>", "</table>", "</tr>", "</td>", "</strong>", "<th>", "</th>", "<tbody>", "<tbody>", "<thead>", "</thead>"]: |
| 258 | + text = text.replace(tag, "") |
| 259 | + return text |
| 260 | + output = clean_html_tags(output) |
| 261 | + |
| 262 | + if isinstance(item, (TextItem)): |
| 263 | + print("OLD TEXT: {}".format(item.text)) |
| 264 | + print("NEW TEXT: {}".format(output)) |
| 265 | + |
| 266 | + # Re-populate text |
| 267 | + if isinstance(item, (TextItem, GraphCell)): |
| 268 | + item.text = output |
| 269 | + item.orig = output |
| 270 | + elif isinstance(item, (TableCell, RichTableCell)): |
| 271 | + item.text = output |
| 272 | + elif isinstance(item, PictureItem): |
| 273 | + pass |
| 274 | + else: |
| 275 | + raise ValueError(f"Unknown item type: {type(item)}") |
| 276 | + |
| 277 | + # Take care of charspans for relevant types |
| 278 | + if isinstance(item, GraphCell): |
| 279 | + item.prov.charspan = [0, len(output)] |
| 280 | + elif isinstance(item, TextItem): |
| 281 | + item.prov[0].charspan = [0, len(output)] |
| 282 | + |
| 283 | + yield item |
| 284 | + |
| 285 | + |
| 286 | +def main() -> None: |
| 287 | + # TODO: Properly process cases for the items which have more than one provenance |
| 288 | + |
| 289 | + # Let's prepare a Docling document json with embedded page images |
| 290 | + pipeline_options = PdfPipelineOptions() |
| 291 | + pipeline_options.generate_page_images = True |
| 292 | + pipeline_options.generate_picture_images = True |
| 293 | + pipeline_options.images_scale = 4.0 |
| 294 | + |
| 295 | + doc_converter = DocumentConverter( # all of the below is optional, has internal defaults. |
| 296 | + allowed_formats=[InputFormat.PDF], |
| 297 | + format_options={InputFormat.PDF: PdfFormatOption(pipeline_cls=StandardPdfPipeline, pipeline_options=pipeline_options)} |
| 298 | + ) |
| 299 | + print("Converting PDF to get a Docling document json with embedded page images...") |
| 300 | + conv_result = doc_converter.convert(PDF_DOC) |
| 301 | + # conv_result.document.save_as_json(filename = JSON_DOC, image_mode = ImageRefMode.EMBEDDED) |
| 302 | + conv_result.document.save_as_json(filename = JSON_DOC, image_mode = ImageRefMode.REFERENCED) |
| 303 | + |
| 304 | + md1 = conv_result.document.export_to_markdown() |
| 305 | + print("*** ORIGINAL MARKDOWN ***") |
| 306 | + print(md1) |
| 307 | + |
| 308 | + print("Post-process all bounding boxes with OCR") |
| 309 | + # Post-Process OCR on top of existing Docling document: |
| 310 | + pipeline_options = OcrEnrichmentPipelineOptions( |
| 311 | + api_options=PictureDescriptionApiOptions( |
| 312 | + url=LM_STUDIO_URL, |
| 313 | + prompt=DEFAULT_PROMPT, |
| 314 | + provenance="lm-studio-ocr", |
| 315 | + batch_size=4, |
| 316 | + concurrency=2, |
| 317 | + scale=2.0, |
| 318 | + params={"model": LM_STUDIO_MODEL}, |
| 319 | + ) |
| 320 | + ) |
| 321 | + |
| 322 | + doc_converter = DocumentConverter( |
| 323 | + format_options={ |
| 324 | + InputFormat.JSON_DOCLING: FormatOption( |
| 325 | + pipeline_cls=OcrEnrichmentPipeline, |
| 326 | + pipeline_options=pipeline_options, |
| 327 | + backend=DoclingJSONBackend |
| 328 | + ) |
| 329 | + } |
| 330 | + ) |
| 331 | + result = doc_converter.convert(JSON_DOC) |
| 332 | + result.document.pages[1].image.pil_image.show() |
| 333 | + result.document.save_as_json(POST_PROCESSED_JSON_DOC) |
| 334 | + md = result.document.export_to_markdown() |
| 335 | + print("*** MARKDOWN ***") |
| 336 | + print(md) |
| 337 | + # print("*** KV ITEMS ***") |
| 338 | + # for kv_item in result.document.key_value_items: |
| 339 | + # for kv_item_cell in kv_item.graph.cells: |
| 340 | + # print("{} - {}".format(kv_item_cell.label, kv_item_cell.text)) |
| 341 | + |
| 342 | + |
| 343 | +if __name__ == "__main__": |
| 344 | + main() |
0 commit comments