Skip to content

Commit 5172b94

Browse files
committed
Clean up deep learning and SciPy sections.
Standardized notebook names, added SciPy section header.
1 parent e43d925 commit 5172b94

File tree

1 file changed

+10
-8
lines changed

1 file changed

+10
-8
lines changed

README.md

Lines changed: 10 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -87,13 +87,13 @@ IPython Notebook(s) demonstrating deep learning functionality.
8787

8888
| Notebook | Description |
8989
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
90-
| [ts-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
91-
| [ts-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
92-
| [ts-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
93-
| [ts-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
94-
| [ts-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
95-
| [ts-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
96-
| [deep dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
90+
| [tsf-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
91+
| [tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
92+
| [tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
93+
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
94+
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
95+
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
96+
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
9797

9898
<br/>
9999
<p align="center">
@@ -123,10 +123,12 @@ IPython Notebook(s) demonstrating scikit-learn functionality.
123123

124124
## statistical-inference-scipy
125125

126+
IPython Notebook(s) demonstrating statistical inference with SciPy functionality.
127+
126128
| Notebook | Description |
127129
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
128130
| scipy | SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data. |
129-
| [effect_size](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/effect_size.ipynb) | Effect size. |
131+
| [effect-size](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/effect_size.ipynb) | Effect size. |
130132
| [sampling](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/sampling.ipynb) | Random sampling. |
131133
| [hypothesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/hypothesis.ipynb) | Hypothesis testing. |
132134

0 commit comments

Comments
 (0)