Skip to content

Commit d7c151b

Browse files
committed
Reorder sections based on traffic metrics.
1 parent 84a524f commit d7c151b

File tree

1 file changed

+37
-37
lines changed

1 file changed

+37
-37
lines changed

README.md

Lines changed: 37 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -12,14 +12,14 @@
1212

1313
## Index
1414

15-
* [deep-learning](#deep-learning)
1615
* [scikit-learn](#scikit-learn)
16+
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
17+
* [deep-learning](#deep-learning)
1718
* [statistical-inference-scipy](#statistical-inference-scipy)
1819
* [pandas](#pandas)
1920
* [matplotlib](#matplotlib)
2021
* [numpy](#numpy)
2122
* [python-data](#python-data)
22-
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
2323
* [spark](#spark)
2424
* [mapreduce-python](#mapreduce-python)
2525
* [amazon web services](#aws)
@@ -31,6 +31,41 @@
3131
* [contact-info](#contact-info)
3232
* [license](#license)
3333

34+
<br/>
35+
<p align="center">
36+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
37+
</p>
38+
39+
## scikit-learn
40+
41+
IPython Notebook(s) demonstrating scikit-learn functionality.
42+
43+
| Notebook | Description |
44+
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
45+
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
46+
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
47+
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
48+
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
49+
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
50+
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
51+
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
52+
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
53+
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
54+
55+
<br/>
56+
<p align="center">
57+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
58+
</p>
59+
60+
## kaggle-and-business-analyses
61+
62+
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
63+
64+
| Notebook | Description |
65+
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
66+
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
67+
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
68+
3469
<br/>
3570
<p align="center">
3671
<img src="http://i.imgur.com/ZhKXrKZ.png">
@@ -93,27 +128,6 @@ IPython Notebook(s) demonstrating deep learning functionality.
93128
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
94129
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
95130

96-
<br/>
97-
<p align="center">
98-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
99-
</p>
100-
101-
## scikit-learn
102-
103-
IPython Notebook(s) demonstrating scikit-learn functionality.
104-
105-
| Notebook | Description |
106-
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
107-
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
108-
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
109-
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
110-
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
111-
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
112-
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
113-
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
114-
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
115-
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
116-
117131
<br/>
118132
<p align="center">
119133
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scipy.png">
@@ -189,20 +203,6 @@ IPython Notebook(s) demonstrating Python functionality geared towards data analy
189203
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Learn how to debug in Python with the interactive source code debugger. |
190204
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Learn how to test in Python with Nose unit tests. |
191205

192-
<br/>
193-
<p align="center">
194-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
195-
</p>
196-
197-
## kaggle-and-business-analyses
198-
199-
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
200-
201-
| Notebook | Description |
202-
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
203-
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
204-
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
205-
206206
<br/>
207207
<p align="center">
208208
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">

0 commit comments

Comments
 (0)