Skip to content

feat: add solutions to lc problem: No.1458 #3354

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 60 additions & 45 deletions solution/1400-1499/1458.Max Dot Product of Two Subsequences/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -80,17 +80,16 @@ tags:

### 方法一:动态规划

定义 $dp[i][j]$ 表示 $nums1$ 前 $i$ 个元素和 $nums2$ 前 $j$ 个元素得到的最大点积
我们定义 $f[i][j]$ 表示 $\textit{nums1}$ 的前 $i$ 个元素和 $\textit{nums2}$ 的前 $j$ 个元素构成的两个子序列的最大点积。初始时 $f[i][j] = -\infty$

那么有
对于 $f[i][j]$,我们有以下几种情况

$$
dp[i][j]=max(dp[i-1][j], dp[i][j - 1], max(dp[i - 1][j - 1], 0) + nums1[i] \times nums2[j])
$$
1. 不选 $\textit{nums1}[i-1]$ 或者不选 $\textit{nums2}[j-1]$,即 $f[i][j] = \max(f[i-1][j], f[i][j-1])$;
2. 选 $\textit{nums1}[i-1]$ 和 $\textit{nums2}[j-1]$,即 $f[i][j] = \max(f[i][j], \max(0, f[i-1][j-1]) + \textit{nums1}[i-1] \times \textit{nums2}[j-1])$。

答案为 $dp[m][n]$。
最终答案即为 $f[m][n]$。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是数组 $nums1$ 和 $nums2$ 的长度。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是数组 $\textit{nums1}$ 和 $\textit{nums2}$ 的长度。

<!-- tabs:start -->

Expand All @@ -100,12 +99,12 @@ $$
class Solution:
def maxDotProduct(self, nums1: List[int], nums2: List[int]) -> int:
m, n = len(nums1), len(nums2)
dp = [[-inf] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
v = nums1[i - 1] * nums2[j - 1]
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1], max(dp[i - 1][j - 1], 0) + v)
return dp[-1][-1]
f = [[-inf] * (n + 1) for _ in range(m + 1)]
for i, x in enumerate(nums1, 1):
for j, y in enumerate(nums2, 1):
v = x * y
f[i][j] = max(f[i - 1][j], f[i][j - 1], max(0, f[i - 1][j - 1]) + v)
return f[m][n]
```

#### Java
Expand All @@ -114,18 +113,18 @@ class Solution:
class Solution {
public int maxDotProduct(int[] nums1, int[] nums2) {
int m = nums1.length, n = nums2.length;
int[][] dp = new int[m + 1][n + 1];
for (int[] e : dp) {
Arrays.fill(e, Integer.MIN_VALUE);
int[][] f = new int[m + 1][n + 1];
for (var g : f) {
Arrays.fill(g, Integer.MIN_VALUE);
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = Math.max(
dp[i][j], Math.max(0, dp[i - 1][j - 1]) + nums1[i - 1] * nums2[j - 1]);
int v = nums1[i - 1] * nums2[j - 1];
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
f[i][j] = Math.max(f[i][j], Math.max(f[i - 1][j - 1], 0) + v);
}
}
return dp[m][n];
return f[m][n];
}
}
```
Expand All @@ -137,15 +136,16 @@ class Solution {
public:
int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MIN));
int f[m + 1][n + 1];
memset(f, 0xc0, sizeof f);
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
int v = nums1[i - 1] * nums2[j - 1];
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = max(dp[i][j], max(0, dp[i - 1][j - 1]) + v);
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
f[i][j] = max(f[i][j], max(0, f[i - 1][j - 1]) + v);
}
}
return dp[m][n];
return f[m][n];
}
};
```
Expand All @@ -155,45 +155,60 @@ public:
```go
func maxDotProduct(nums1 []int, nums2 []int) int {
m, n := len(nums1), len(nums2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
for j := range dp[i] {
dp[i][j] = math.MinInt32
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
for j := range f[i] {
f[i][j] = math.MinInt32
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
v := nums1[i-1] * nums2[j-1]
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
dp[i][j] = max(dp[i][j], max(0, dp[i-1][j-1])+v)
f[i][j] = max(f[i-1][j], f[i][j-1])
f[i][j] = max(f[i][j], max(0, f[i-1][j-1])+v)
}
}
return dp[m][n]
return f[m][n]
}
```

#### TypeScript

```ts
function maxDotProduct(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = Array.from({ length: m + 1 }, () => Array.from({ length: n + 1 }, () => -Infinity));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
const v = nums1[i - 1] * nums2[j - 1];
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
f[i][j] = Math.max(f[i][j], Math.max(0, f[i - 1][j - 1]) + v);
}
}
return f[m][n];
}
```

#### Rust

```rust
impl Solution {
#[allow(dead_code)]
pub fn max_dot_product(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 {
let n = nums1.len();
let m = nums2.len();
let mut dp = vec![vec![i32::MIN; m + 1]; n + 1];

// Begin the actual dp process
for i in 1..=n {
for j in 1..=m {
dp[i][j] = std::cmp::max(
std::cmp::max(dp[i - 1][j], dp[i][j - 1]),
std::cmp::max(dp[i - 1][j - 1], 0) + nums1[i - 1] * nums2[j - 1],
);
let m = nums1.len();
let n = nums2.len();
let mut f = vec![vec![i32::MIN; n + 1]; m + 1];

for i in 1..=m {
for j in 1..=n {
let v = nums1[i - 1] * nums2[j - 1];
f[i][j] = f[i][j].max(f[i - 1][j]).max(f[i][j - 1]);
f[i][j] = f[i][j].max(f[i - 1][j - 1].max(0) + v);
}
}

dp[n][m]
f[m][n]
}
}
```
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,18 @@ Their dot product is -1.</pre>

<!-- solution:start -->

### Solution 1
### Solution 1: Dynamic Programming

We define $f[i][j]$ to represent the maximum dot product of two subsequences formed by the first $i$ elements of $\textit{nums1}$ and the first $j$ elements of $\textit{nums2}$. Initially, $f[i][j] = -\infty$.

For $f[i][j]$, we have the following cases:

1. Do not select $\textit{nums1}[i-1]$ or do not select $\textit{nums2}[j-1]$, i.e., $f[i][j] = \max(f[i-1][j], f[i][j-1])$;
2. Select $\textit{nums1}[i-1]$ and $\textit{nums2}[j-1]$, i.e., $f[i][j] = \max(f[i][j], \max(0, f[i-1][j-1]) + \textit{nums1}[i-1] \times \textit{nums2}[j-1])$.

The final answer is $f[m][n]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of the arrays $\textit{nums1}$ and $\textit{nums2}$, respectively.

<!-- tabs:start -->

Expand All @@ -74,12 +85,12 @@ Their dot product is -1.</pre>
class Solution:
def maxDotProduct(self, nums1: List[int], nums2: List[int]) -> int:
m, n = len(nums1), len(nums2)
dp = [[-inf] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
v = nums1[i - 1] * nums2[j - 1]
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1], max(dp[i - 1][j - 1], 0) + v)
return dp[-1][-1]
f = [[-inf] * (n + 1) for _ in range(m + 1)]
for i, x in enumerate(nums1, 1):
for j, y in enumerate(nums2, 1):
v = x * y
f[i][j] = max(f[i - 1][j], f[i][j - 1], max(0, f[i - 1][j - 1]) + v)
return f[m][n]
```

#### Java
Expand All @@ -88,18 +99,18 @@ class Solution:
class Solution {
public int maxDotProduct(int[] nums1, int[] nums2) {
int m = nums1.length, n = nums2.length;
int[][] dp = new int[m + 1][n + 1];
for (int[] e : dp) {
Arrays.fill(e, Integer.MIN_VALUE);
int[][] f = new int[m + 1][n + 1];
for (var g : f) {
Arrays.fill(g, Integer.MIN_VALUE);
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = Math.max(
dp[i][j], Math.max(0, dp[i - 1][j - 1]) + nums1[i - 1] * nums2[j - 1]);
int v = nums1[i - 1] * nums2[j - 1];
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
f[i][j] = Math.max(f[i][j], Math.max(f[i - 1][j - 1], 0) + v);
}
}
return dp[m][n];
return f[m][n];
}
}
```
Expand All @@ -111,15 +122,16 @@ class Solution {
public:
int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MIN));
int f[m + 1][n + 1];
memset(f, 0xc0, sizeof f);
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
int v = nums1[i - 1] * nums2[j - 1];
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = max(dp[i][j], max(0, dp[i - 1][j - 1]) + v);
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
f[i][j] = max(f[i][j], max(0, f[i - 1][j - 1]) + v);
}
}
return dp[m][n];
return f[m][n];
}
};
```
Expand All @@ -129,45 +141,60 @@ public:
```go
func maxDotProduct(nums1 []int, nums2 []int) int {
m, n := len(nums1), len(nums2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
for j := range dp[i] {
dp[i][j] = math.MinInt32
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
for j := range f[i] {
f[i][j] = math.MinInt32
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
v := nums1[i-1] * nums2[j-1]
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
dp[i][j] = max(dp[i][j], max(0, dp[i-1][j-1])+v)
f[i][j] = max(f[i-1][j], f[i][j-1])
f[i][j] = max(f[i][j], max(0, f[i-1][j-1])+v)
}
}
return dp[m][n]
return f[m][n]
}
```

#### TypeScript

```ts
function maxDotProduct(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = Array.from({ length: m + 1 }, () => Array.from({ length: n + 1 }, () => -Infinity));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
const v = nums1[i - 1] * nums2[j - 1];
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
f[i][j] = Math.max(f[i][j], Math.max(0, f[i - 1][j - 1]) + v);
}
}
return f[m][n];
}
```

#### Rust

```rust
impl Solution {
#[allow(dead_code)]
pub fn max_dot_product(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 {
let n = nums1.len();
let m = nums2.len();
let mut dp = vec![vec![i32::MIN; m + 1]; n + 1];

// Begin the actual dp process
for i in 1..=n {
for j in 1..=m {
dp[i][j] = std::cmp::max(
std::cmp::max(dp[i - 1][j], dp[i][j - 1]),
std::cmp::max(dp[i - 1][j - 1], 0) + nums1[i - 1] * nums2[j - 1],
);
let m = nums1.len();
let n = nums2.len();
let mut f = vec![vec![i32::MIN; n + 1]; m + 1];

for i in 1..=m {
for j in 1..=n {
let v = nums1[i - 1] * nums2[j - 1];
f[i][j] = f[i][j].max(f[i - 1][j]).max(f[i][j - 1]);
f[i][j] = f[i][j].max(f[i - 1][j - 1].max(0) + v);
}
}

dp[n][m]
f[m][n]
}
}
```
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,15 @@ class Solution {
public:
int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MIN));
int f[m + 1][n + 1];
memset(f, 0xc0, sizeof f);
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
int v = nums1[i - 1] * nums2[j - 1];
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = max(dp[i][j], max(0, dp[i - 1][j - 1]) + v);
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
f[i][j] = max(f[i][j], max(0, f[i - 1][j - 1]) + v);
}
}
return dp[m][n];
return f[m][n];
}
};
};
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
func maxDotProduct(nums1 []int, nums2 []int) int {
m, n := len(nums1), len(nums2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
for j := range dp[i] {
dp[i][j] = math.MinInt32
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
for j := range f[i] {
f[i][j] = math.MinInt32
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
v := nums1[i-1] * nums2[j-1]
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
dp[i][j] = max(dp[i][j], max(0, dp[i-1][j-1])+v)
f[i][j] = max(f[i-1][j], f[i][j-1])
f[i][j] = max(f[i][j], max(0, f[i-1][j-1])+v)
}
}
return dp[m][n]
}
return f[m][n]
}
Loading
Loading