Skip to content

feat: add solutions to lc problem: No.3259 #3433

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -68,32 +68,107 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/3200-3299/3259.Ma

<!-- solution:start -->

### 方法一
### 方法一:动态规划

我们定义 $f[i][0]$ 表示在第 $i$ 小时选择能量饮料 A 获得的最大强化能量,定义 $f[i][1]$ 表示在第 $i$ 小时选择能量饮料 B 获得的最大强化能量。初始时 $f[0][0] = \textit{energyDrinkA}[0]$, $f[0][1] = \textit{energyDrinkB}[0]$。答案为 $\max(f[n - 1][0], f[n - 1][1])$。

对于 $i > 0$,我们有以下状态转移方程:

$$
\begin{aligned}
f[i][0] & = \max(f[i - 1][0] + \textit{energyDrinkA}[i], f[i - 1][1]) \\
f[i][1] & = \max(f[i - 1][1] + \textit{energyDrinkB}[i], f[i - 1][0])
\end{aligned}
$$

最后返回 $\max(f[n - 1][0], f[n - 1][1])$ 即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组的长度。

<!-- tabs:start -->

#### Python3

```python

class Solution:
def maxEnergyBoost(self, energyDrinkA: List[int], energyDrinkB: List[int]) -> int:
n = len(energyDrinkA)
f = [[0] * 2 for _ in range(n)]
f[0][0] = energyDrinkA[0]
f[0][1] = energyDrinkB[0]
for i in range(1, n):
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1])
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0])
return max(f[n - 1])
```

#### Java

```java

class Solution {
public long maxEnergyBoost(int[] energyDrinkA, int[] energyDrinkB) {
int n = energyDrinkA.length;
long[][] f = new long[n][2];
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(f[n - 1][0], f[n - 1][1]);
}
}
```

#### C++

```cpp

class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
vector<vector<long long>> f(n, vector<long long>(2));
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return max(f[n - 1][0], f[n - 1][1]);
}
};
```

#### Go

```go
func maxEnergyBoost(energyDrinkA []int, energyDrinkB []int) int64 {
n := len(energyDrinkA)
f := make([][2]int64, n)
f[0][0] = int64(energyDrinkA[0])
f[0][1] = int64(energyDrinkB[0])
for i := 1; i < n; i++ {
f[i][0] = max(f[i-1][0]+int64(energyDrinkA[i]), f[i-1][1])
f[i][1] = max(f[i-1][1]+int64(energyDrinkB[i]), f[i-1][0])
}
return max(f[n-1][0], f[n-1][1])
}
```

#### TypeScript

```ts
function maxEnergyBoost(energyDrinkA: number[], energyDrinkB: number[]): number {
const n = energyDrinkA.length;
const f: number[][] = Array.from({ length: n }, () => [0, 0]);
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (let i = 1; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(...f[n - 1]!);
}
```

<!-- tabs:end -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,32 +68,107 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/3200-3299/3259.Ma

<!-- solution:start -->

### Solution 1
### Solution 1: Dynamic Programming

We define $f[i][0]$ to represent the maximum boost energy obtained by choosing energy drink A at the $i$-th hour, and $f[i][1]$ to represent the maximum boost energy obtained by choosing energy drink B at the $i$-th hour. Initially, $f[0][0] = \textit{energyDrinkA}[0]$, $f[0][1] = \textit{energyDrinkB}[0]$. The answer is $\max(f[n - 1][0], f[n - 1][1])$.

For $i > 0$, we have the following state transition equations:

$$
\begin{aligned}
f[i][0] & = \max(f[i - 1][0] + \textit{energyDrinkA}[i], f[i - 1][1]) \\
f[i][1] & = \max(f[i - 1][1] + \textit{energyDrinkB}[i], f[i - 1][0])
\end{aligned}
$$

Finally, return $\max(f[n - 1][0], f[n - 1][1])$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.

<!-- tabs:start -->

#### Python3

```python

class Solution:
def maxEnergyBoost(self, energyDrinkA: List[int], energyDrinkB: List[int]) -> int:
n = len(energyDrinkA)
f = [[0] * 2 for _ in range(n)]
f[0][0] = energyDrinkA[0]
f[0][1] = energyDrinkB[0]
for i in range(1, n):
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1])
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0])
return max(f[n - 1])
```

#### Java

```java

class Solution {
public long maxEnergyBoost(int[] energyDrinkA, int[] energyDrinkB) {
int n = energyDrinkA.length;
long[][] f = new long[n][2];
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(f[n - 1][0], f[n - 1][1]);
}
}
```

#### C++

```cpp

class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
vector<vector<long long>> f(n, vector<long long>(2));
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return max(f[n - 1][0], f[n - 1][1]);
}
};
```

#### Go

```go
func maxEnergyBoost(energyDrinkA []int, energyDrinkB []int) int64 {
n := len(energyDrinkA)
f := make([][2]int64, n)
f[0][0] = int64(energyDrinkA[0])
f[0][1] = int64(energyDrinkB[0])
for i := 1; i < n; i++ {
f[i][0] = max(f[i-1][0]+int64(energyDrinkA[i]), f[i-1][1])
f[i][1] = max(f[i-1][1]+int64(energyDrinkB[i]), f[i-1][0])
}
return max(f[n-1][0], f[n-1][1])
}
```

#### TypeScript

```ts
function maxEnergyBoost(energyDrinkA: number[], energyDrinkB: number[]): number {
const n = energyDrinkA.length;
const f: number[][] = Array.from({ length: n }, () => [0, 0]);
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (let i = 1; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(...f[n - 1]!);
}
```

<!-- tabs:end -->
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
vector<vector<long long>> f(n, vector<long long>(2));
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return max(f[n - 1][0], f[n - 1][1]);
}
};
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
func maxEnergyBoost(energyDrinkA []int, energyDrinkB []int) int64 {
n := len(energyDrinkA)
f := make([][2]int64, n)
f[0][0] = int64(energyDrinkA[0])
f[0][1] = int64(energyDrinkB[0])
for i := 1; i < n; i++ {
f[i][0] = max(f[i-1][0]+int64(energyDrinkA[i]), f[i-1][1])
f[i][1] = max(f[i-1][1]+int64(energyDrinkB[i]), f[i-1][0])
}
return max(f[n-1][0], f[n-1][1])
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
class Solution {
public long maxEnergyBoost(int[] energyDrinkA, int[] energyDrinkB) {
int n = energyDrinkA.length;
long[][] f = new long[n][2];
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(f[n - 1][0], f[n - 1][1]);
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
class Solution:
def maxEnergyBoost(self, energyDrinkA: List[int], energyDrinkB: List[int]) -> int:
n = len(energyDrinkA)
f = [[0] * 2 for _ in range(n)]
f[0][0] = energyDrinkA[0]
f[0][1] = energyDrinkB[0]
for i in range(1, n):
f[i][0] = max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1])
f[i][1] = max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0])
return max(f[n - 1])
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
function maxEnergyBoost(energyDrinkA: number[], energyDrinkB: number[]): number {
const n = energyDrinkA.length;
const f: number[][] = Array.from({ length: n }, () => [0, 0]);
f[0][0] = energyDrinkA[0];
f[0][1] = energyDrinkB[0];
for (let i = 1; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0] + energyDrinkA[i], f[i - 1][1]);
f[i][1] = Math.max(f[i - 1][1] + energyDrinkB[i], f[i - 1][0]);
}
return Math.max(...f[n - 1]!);
}
Loading