Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions dwave/plugins/torch/nn/modules/quantization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# Copyright 2025 D-Wave
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from torch import nn

from dwave.plugins.torch.utils import bit2spin_soft, spin2bit_soft, straight_through_bitrounding


class StraightThroughTanh(nn.Module):
def __init__(self):
super().__init__(self, vars())
self.hth = nn.Tanh()

def forward(self, x):
fuzzy_spins = self.hth(x)
fuzzy_bits = spin2bit_soft(fuzzy_spins)
bits = straight_through_bitrounding(fuzzy_bits)
spins = bit2spin_soft(bits)
return spins


class StraightThroughHardTanh(nn.Module):
def __init__(self):
super().__init__(self, vars())
self.hth = nn.Hardtanh()

def forward(self, x):
fuzzy_spins = self.hth(x)
fuzzy_bits = spin2bit_soft(fuzzy_spins)
bits = straight_through_bitrounding(fuzzy_bits)
spins = bit2spin_soft(bits)
return spins


class Bit2SpinSoft(nn.Module):
def __init__(self):
super().__init__()

def forward(self, x):
return bit2spin_soft(x)


class Spin2BitSoft(nn.Module):
def __init__(self):
super().__init__()

def forward(self, x):
return spin2bit_soft(x)
37 changes: 37 additions & 0 deletions dwave/plugins/torch/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,3 +41,40 @@ def sampleset_to_tensor(
permutation = [var_to_sample_i[v] for v in ordered_vars]
sample = sample_set.record.sample[:, permutation]
return torch.tensor(sample, dtype=torch.float32, device=device)


def straight_through_bitrounding(fuzzy_bits):
if not ((fuzzy_bits >= 0) & (fuzzy_bits <= 1)).all():
raise ValueError(f"Inputs should be in [0, 1]: {fuzzy_bits}")
bits = fuzzy_bits + (fuzzy_bits.round() - fuzzy_bits).detach()
return bits


def bit2spin_soft(b):
if not ((b >= 0) & (b <= 1)).all():
raise ValueError(f"Not all inputs are in [0, 1]: {b}")
return b * 2.0 - 1.0


def spin2bit_soft(s):
if (s.abs() > 1).any():
raise ValueError(f"Not all inputs are in [-1, 1]: {s}")
return (s + 1.0) / 2.0


def rands_like(x):
return rands(x.shape, device=x.device)


def randb_like(x):
return randb(x.shape, device=x.device)


def randb(shape, device=None):
return torch.randint(0, 2, shape, device=device)


def rands(shape, device=None):
if isinstance(shape, int):
shape = (shape,)
return bit2spin_soft(torch.randint(0, 2, shape, device=device))