-
Notifications
You must be signed in to change notification settings - Fork 2
ConCatLayer #189
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
ConCatLayer #189
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,32 @@ | ||
| #pragma once | ||
| #include <cstdint> | ||
| #include <numeric> | ||
| #include <stdexcept> | ||
| #include <vector> | ||
|
|
||
| #include "layers/Layer.hpp" | ||
| #include "layers/Tensor.hpp" | ||
|
|
||
| namespace it_lab_ai { | ||
|
|
||
| class ConcatLayer : public Layer { | ||
| public: | ||
| explicit ConcatLayer(int64_t axis = 0) : axis_(axis) {} | ||
|
|
||
| void run(const Tensor& input, Tensor& output) override; | ||
| void run(const std::vector<Tensor>& inputs, Tensor& output); | ||
|
|
||
| static std::string get_name() { return "ConcatLayer"; } | ||
|
|
||
| private: | ||
| int64_t axis_; | ||
|
|
||
| void validate_inputs(const std::vector<Tensor>& inputs) const; | ||
| int64_t normalize_axis(size_t rank) const; | ||
| Shape calculate_output_shape(const std::vector<Tensor>& inputs) const; | ||
|
|
||
| template <typename T> | ||
| void concatenate(const std::vector<Tensor>& inputs, Tensor& output) const; | ||
| }; | ||
|
|
||
| } // namespace it_lab_ai |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,150 @@ | ||
| #include "layers/ConcatLayer.hpp" | ||
|
|
||
| namespace it_lab_ai { | ||
|
|
||
| void ConcatLayer::run(const Tensor& input, Tensor& output) { output = input; } | ||
|
|
||
| void ConcatLayer::run(const std::vector<Tensor>& inputs, Tensor& output) { | ||
| if (inputs.empty()) { | ||
| throw std::runtime_error("ConcatLayer: No input tensors provided"); | ||
| } | ||
|
|
||
| validate_inputs(inputs); | ||
|
|
||
| switch (inputs[0].get_type()) { | ||
| case Type::kFloat: | ||
| concatenate<float>(inputs, output); | ||
| break; | ||
| case Type::kInt: | ||
| concatenate<int>(inputs, output); | ||
| break; | ||
| default: | ||
| throw std::runtime_error("ConcatLayer: Unsupported input tensor type"); | ||
| } | ||
| } | ||
|
|
||
| void ConcatLayer::validate_inputs(const std::vector<Tensor>& inputs) const { | ||
| if (inputs.empty()) return; | ||
|
|
||
| const Shape& first_shape = inputs[0].get_shape(); | ||
| Type first_type = inputs[0].get_type(); | ||
| const int64_t normalized_axis = normalize_axis(first_shape.dims()); | ||
|
|
||
| for (size_t i = 1; i < inputs.size(); ++i) { | ||
| const Shape& shape = inputs[i].get_shape(); | ||
| if (shape.dims() != first_shape.dims()) { | ||
| throw std::runtime_error( | ||
| "ConcatLayer: All input tensors must have the same rank"); | ||
| } | ||
|
|
||
| if (inputs[i].get_type() != first_type) { | ||
| throw std::runtime_error( | ||
| "ConcatLayer: All input tensors must have the same type"); | ||
| } | ||
|
|
||
| for (size_t dim = 0; dim < shape.dims(); ++dim) { | ||
| if (dim != static_cast<size_t>(normalized_axis) && | ||
| shape[dim] != first_shape[dim]) { | ||
| throw std::runtime_error( | ||
| "ConcatLayer: All input tensors must have the same shape except " | ||
| "for the concatenation axis"); | ||
| } | ||
| } | ||
| } | ||
| } | ||
|
|
||
| int64_t ConcatLayer::normalize_axis(size_t rank) const { | ||
| if (rank == 0) { | ||
| throw std::runtime_error("ConcatLayer: Cannot concatenate scalar tensors"); | ||
| } | ||
|
|
||
| int64_t axis = axis_; | ||
|
|
||
| if (axis < 0) { | ||
| axis += static_cast<int64_t>(rank); | ||
| } | ||
|
|
||
| if (axis < 0 || axis >= static_cast<int64_t>(rank)) { | ||
| throw std::runtime_error("ConcatLayer: Axis " + std::to_string(axis_) + | ||
| " out of range for tensor rank " + | ||
| std::to_string(rank)); | ||
| } | ||
|
|
||
| return axis; | ||
| } | ||
|
|
||
| Shape ConcatLayer::calculate_output_shape( | ||
| const std::vector<Tensor>& inputs) const { | ||
| if (inputs.empty()) return Shape({}); | ||
|
|
||
| const Shape& first_shape = inputs[0].get_shape(); | ||
| std::vector<size_t> output_dims(first_shape.dims()); | ||
| for (size_t i = 0; i < first_shape.dims(); ++i) { | ||
| output_dims[i] = first_shape[i]; | ||
| } | ||
|
|
||
| const int64_t normalized_axis = normalize_axis(first_shape.dims()); | ||
| output_dims[normalized_axis] = 0; | ||
| for (const auto& input : inputs) { | ||
| output_dims[normalized_axis] += input.get_shape()[normalized_axis]; | ||
| } | ||
|
|
||
| return Shape(output_dims); | ||
| } | ||
|
|
||
| template <typename T> | ||
| void ConcatLayer::concatenate(const std::vector<Tensor>& inputs, | ||
| Tensor& output) const { | ||
| Shape output_shape = calculate_output_shape(inputs); | ||
| std::vector<T> output_data(output_shape.count(), 0); | ||
|
|
||
| const int64_t axis = normalize_axis(inputs[0].get_shape().dims()); | ||
| const size_t outer_size = [&]() { | ||
| size_t size = 1; | ||
| for (int64_t i = 0; i < axis; ++i) { | ||
| size *= output_shape[i]; | ||
| } | ||
| return size; | ||
| }(); | ||
|
|
||
| const size_t inner_size = [&]() { | ||
| size_t size = 1; | ||
| for (size_t i = axis + 1; i < output_shape.dims(); ++i) { | ||
| size *= output_shape[i]; | ||
| } | ||
| return size; | ||
| }(); | ||
|
|
||
| size_t output_offset = 0; | ||
|
|
||
| for (const auto& input : inputs) { | ||
| const auto& input_data = *input.as<T>(); | ||
| const Shape& input_shape = input.get_shape(); | ||
| const size_t input_axis_size = input_shape[axis]; | ||
|
|
||
| for (size_t outer = 0; outer < outer_size; ++outer) { | ||
| for (size_t a = 0; a < input_axis_size; ++a) { | ||
| for (size_t inner = 0; inner < inner_size; ++inner) { | ||
| size_t input_pos = | ||
| outer * input_axis_size * inner_size + a * inner_size + inner; | ||
|
|
||
| size_t output_pos = outer * output_shape[axis] * inner_size + | ||
| (output_offset + a) * inner_size + inner; | ||
|
|
||
| output_data[output_pos] = input_data[input_pos]; | ||
| } | ||
| } | ||
| } | ||
|
|
||
| output_offset += input_axis_size; | ||
| } | ||
|
|
||
| output = make_tensor(output_data, output_shape); | ||
| } | ||
|
|
||
| template void ConcatLayer::concatenate<float>(const std::vector<Tensor>&, | ||
| Tensor&) const; | ||
| template void ConcatLayer::concatenate<int>(const std::vector<Tensor>&, | ||
| Tensor&) const; | ||
|
|
||
| } // namespace it_lab_ai |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,198 @@ | ||
| #include <vector> | ||
|
|
||
| #include "gtest/gtest.h" | ||
| #include "layers/ConcatLayer.hpp" | ||
| #include "layers/Tensor.hpp" | ||
|
|
||
| using namespace it_lab_ai; | ||
|
|
||
| TEST(ConcatLayerTests, ConcatEmptyTensors) { | ||
| ConcatLayer layer(0); | ||
|
|
||
| Tensor empty1 = make_tensor<float>({}, {0}); | ||
| Tensor empty2 = make_tensor<float>({}, {2, 0, 3}); | ||
|
|
||
| Tensor output; | ||
|
|
||
| EXPECT_THROW(layer.run({empty1, empty2}, output), std::runtime_error); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, ConcatSingleElementTensors) { | ||
| ConcatLayer layer(0); | ||
|
|
||
| Tensor single1 = make_tensor<float>({42.0f}, {1}); | ||
| Tensor single2 = make_tensor<float>({99.0f}, {1}); | ||
|
|
||
| Tensor output; | ||
|
|
||
| layer.run({single1, single2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({2})); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0}), 42.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1}), 99.0f); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, ConcatAlongAxisWithSize1) { | ||
| ConcatLayer layer(0); | ||
|
|
||
| Tensor input1 = make_tensor<float>({1, 2, 3, 4, 5, 6}, {1, 3, 2}); | ||
| Tensor input2 = make_tensor<float>({7, 8, 9, 10, 11, 12}, {1, 3, 2}); | ||
|
|
||
| Tensor output; | ||
|
|
||
| layer.run({input1, input2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({2, 3, 2})); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0}), 1.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1}), 2.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0}), 3.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1}), 4.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2, 0}), 5.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2, 1}), 6.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0, 0}), 7.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0, 1}), 8.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1, 0}), 9.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1, 1}), 10.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 2, 0}), 11.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 2, 1}), 12.0f); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, ConcatScalars) { | ||
| ConcatLayer layer(0); | ||
|
|
||
| Tensor scalar1 = make_tensor<float>({42.0f}, {}); | ||
| Tensor scalar2 = make_tensor<float>({99.0f}, {}); | ||
|
|
||
| Tensor output; | ||
|
|
||
| EXPECT_THROW(layer.run({scalar1, scalar2}, output), std::runtime_error); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, ConcatSameShapeFloatAxis0) { | ||
| ConcatLayer layer; | ||
| Tensor input1 = make_tensor<float>({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); | ||
| Tensor input2 = make_tensor<float>({5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); | ||
| Tensor output; | ||
|
|
||
| layer.run({input1, input2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({4, 2})); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0}), 1.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1}), 2.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0}), 3.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1}), 4.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({2, 0}), 5.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({2, 1}), 6.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({3, 0}), 7.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({3, 1}), 8.0f); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, ConcatSameShapeIntAxis1) { | ||
| ConcatLayer layer(1); | ||
| Tensor input1 = make_tensor<int>({1, 2, 3, 4}, {2, 2}); | ||
| Tensor input2 = make_tensor<int>({1, 2, 3, 4}, {2, 2}); | ||
| Tensor output; | ||
|
|
||
| layer.run({input1, input2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({2, 4})); | ||
|
|
||
| EXPECT_EQ(output.get<int>({0, 0}), 1); | ||
| EXPECT_EQ(output.get<int>({0, 1}), 2); | ||
| EXPECT_EQ(output.get<int>({0, 2}), 1); | ||
| EXPECT_EQ(output.get<int>({0, 3}), 2); | ||
|
|
||
| EXPECT_EQ(output.get<int>({1, 0}), 3); | ||
| EXPECT_EQ(output.get<int>({1, 1}), 4); | ||
| EXPECT_EQ(output.get<int>({1, 2}), 3); | ||
| EXPECT_EQ(output.get<int>({1, 3}), 4); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, Concat3DTensorsAxis2) { | ||
| ConcatLayer layer(2); | ||
| Tensor input1 = make_tensor<float>({1, 2, 3, 4, 5, 6, 7, 8}, {2, 2, 2}); | ||
| Tensor input2 = | ||
| make_tensor<float>({9, 10, 11, 12, 13, 14, 15, 16}, {2, 2, 2}); | ||
| Tensor output; | ||
|
|
||
| layer.run({input1, input2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({2, 2, 4})); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0}), 1.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1}), 2.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0}), 3.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1}), 4.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 2}), 9.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 3}), 10.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 2}), 11.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 3}), 12.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0, 0}), 5.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0, 1}), 6.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1, 0}), 7.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1, 1}), 8.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0, 2}), 13.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0, 3}), 14.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1, 2}), 15.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1, 3}), 16.0f); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, NegativeAxis) { | ||
| ConcatLayer layer(-1); | ||
| Tensor input1 = make_tensor<float>({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); | ||
| Tensor input2 = make_tensor<float>({5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); | ||
| Tensor output; | ||
|
|
||
| layer.run({input1, input2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({2, 4})); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0}), 1.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1}), 2.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2}), 5.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 3}), 6.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({1, 0}), 3.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 1}), 4.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 2}), 7.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({1, 3}), 8.0f); | ||
| } | ||
|
|
||
| TEST(ConcatLayerTests, ConcatResNetStyle) { | ||
| ConcatLayer layer(1); | ||
| Tensor input1 = make_tensor<float>({1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 2, 2}); | ||
| Tensor input2 = | ||
| make_tensor<float>({9, 10, 11, 12, 13, 14, 15, 16}, {1, 2, 2, 2}); | ||
| Tensor output; | ||
|
|
||
| layer.run({input1, input2}, output); | ||
|
|
||
| ASSERT_EQ(output.get_shape(), Shape({1, 4, 2, 2})); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0, 0}), 1.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0, 1}), 2.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1, 0}), 3.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1, 1}), 4.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0, 0}), 5.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0, 1}), 6.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1, 0}), 7.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1, 1}), 8.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2, 0, 0}), 9.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2, 0, 1}), 10.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2, 1, 0}), 11.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 2, 1, 1}), 12.0f); | ||
|
|
||
| EXPECT_FLOAT_EQ(output.get<float>({0, 3, 0, 0}), 13.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 3, 0, 1}), 14.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 3, 1, 0}), 15.0f); | ||
| EXPECT_FLOAT_EQ(output.get<float>({0, 3, 1, 1}), 16.0f); | ||
| } | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please, add tests for 0/1 inputs