Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions include/layers/ConcatLayer.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
#pragma once
#include <cstdint>
#include <numeric>
#include <stdexcept>
#include <vector>

#include "layers/Layer.hpp"
#include "layers/Tensor.hpp"

namespace it_lab_ai {

class ConcatLayer : public Layer {
public:
explicit ConcatLayer(int64_t axis = 0) : axis_(axis) {}

void run(const Tensor& input, Tensor& output) override;
void run(const std::vector<Tensor>& inputs, Tensor& output);

static std::string get_name() { return "ConcatLayer"; }

private:
int64_t axis_;

void validate_inputs(const std::vector<Tensor>& inputs) const;
int64_t normalize_axis(size_t rank) const;
Shape calculate_output_shape(const std::vector<Tensor>& inputs) const;

template <typename T>
void concatenate(const std::vector<Tensor>& inputs, Tensor& output) const;
};

} // namespace it_lab_ai
150 changes: 150 additions & 0 deletions src/layers/ConcatLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
#include "layers/ConcatLayer.hpp"

namespace it_lab_ai {

void ConcatLayer::run(const Tensor& input, Tensor& output) { output = input; }

void ConcatLayer::run(const std::vector<Tensor>& inputs, Tensor& output) {
if (inputs.empty()) {
throw std::runtime_error("ConcatLayer: No input tensors provided");
}

validate_inputs(inputs);

switch (inputs[0].get_type()) {
case Type::kFloat:
concatenate<float>(inputs, output);
break;
case Type::kInt:
concatenate<int>(inputs, output);
break;
default:
throw std::runtime_error("ConcatLayer: Unsupported input tensor type");
}
}

void ConcatLayer::validate_inputs(const std::vector<Tensor>& inputs) const {
if (inputs.empty()) return;

const Shape& first_shape = inputs[0].get_shape();
Type first_type = inputs[0].get_type();
const int64_t normalized_axis = normalize_axis(first_shape.dims());

for (size_t i = 1; i < inputs.size(); ++i) {
const Shape& shape = inputs[i].get_shape();
if (shape.dims() != first_shape.dims()) {
throw std::runtime_error(
"ConcatLayer: All input tensors must have the same rank");
}

if (inputs[i].get_type() != first_type) {
throw std::runtime_error(
"ConcatLayer: All input tensors must have the same type");
}

for (size_t dim = 0; dim < shape.dims(); ++dim) {
if (dim != static_cast<size_t>(normalized_axis) &&
shape[dim] != first_shape[dim]) {
throw std::runtime_error(
"ConcatLayer: All input tensors must have the same shape except "
"for the concatenation axis");
}
}
}
}

int64_t ConcatLayer::normalize_axis(size_t rank) const {
if (rank == 0) {
throw std::runtime_error("ConcatLayer: Cannot concatenate scalar tensors");
}

int64_t axis = axis_;

if (axis < 0) {
axis += static_cast<int64_t>(rank);
}

if (axis < 0 || axis >= static_cast<int64_t>(rank)) {
throw std::runtime_error("ConcatLayer: Axis " + std::to_string(axis_) +
" out of range for tensor rank " +
std::to_string(rank));
}

return axis;
}

Shape ConcatLayer::calculate_output_shape(
const std::vector<Tensor>& inputs) const {
if (inputs.empty()) return Shape({});

const Shape& first_shape = inputs[0].get_shape();
std::vector<size_t> output_dims(first_shape.dims());
for (size_t i = 0; i < first_shape.dims(); ++i) {
output_dims[i] = first_shape[i];
}

const int64_t normalized_axis = normalize_axis(first_shape.dims());
output_dims[normalized_axis] = 0;
for (const auto& input : inputs) {
output_dims[normalized_axis] += input.get_shape()[normalized_axis];
}

return Shape(output_dims);
}

template <typename T>
void ConcatLayer::concatenate(const std::vector<Tensor>& inputs,
Tensor& output) const {
Shape output_shape = calculate_output_shape(inputs);
std::vector<T> output_data(output_shape.count(), 0);

const int64_t axis = normalize_axis(inputs[0].get_shape().dims());
const size_t outer_size = [&]() {
size_t size = 1;
for (int64_t i = 0; i < axis; ++i) {
size *= output_shape[i];
}
return size;
}();

const size_t inner_size = [&]() {
size_t size = 1;
for (size_t i = axis + 1; i < output_shape.dims(); ++i) {
size *= output_shape[i];
}
return size;
}();

size_t output_offset = 0;

for (const auto& input : inputs) {
const auto& input_data = *input.as<T>();
const Shape& input_shape = input.get_shape();
const size_t input_axis_size = input_shape[axis];

for (size_t outer = 0; outer < outer_size; ++outer) {
for (size_t a = 0; a < input_axis_size; ++a) {
for (size_t inner = 0; inner < inner_size; ++inner) {
size_t input_pos =
outer * input_axis_size * inner_size + a * inner_size + inner;

size_t output_pos = outer * output_shape[axis] * inner_size +
(output_offset + a) * inner_size + inner;

output_data[output_pos] = input_data[input_pos];
}
}
}

output_offset += input_axis_size;
}

output = make_tensor(output_data, output_shape);
}

template void ConcatLayer::concatenate<float>(const std::vector<Tensor>&,
Tensor&) const;
template void ConcatLayer::concatenate<int>(const std::vector<Tensor>&,
Tensor&) const;

} // namespace it_lab_ai
198 changes: 198 additions & 0 deletions test/single_layer/test_concatlayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
#include <vector>

#include "gtest/gtest.h"
#include "layers/ConcatLayer.hpp"
#include "layers/Tensor.hpp"

using namespace it_lab_ai;

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please, add tests for 0/1 inputs

TEST(ConcatLayerTests, ConcatEmptyTensors) {
ConcatLayer layer(0);

Tensor empty1 = make_tensor<float>({}, {0});
Tensor empty2 = make_tensor<float>({}, {2, 0, 3});

Tensor output;

EXPECT_THROW(layer.run({empty1, empty2}, output), std::runtime_error);
}

TEST(ConcatLayerTests, ConcatSingleElementTensors) {
ConcatLayer layer(0);

Tensor single1 = make_tensor<float>({42.0f}, {1});
Tensor single2 = make_tensor<float>({99.0f}, {1});

Tensor output;

layer.run({single1, single2}, output);

ASSERT_EQ(output.get_shape(), Shape({2}));
EXPECT_FLOAT_EQ(output.get<float>({0}), 42.0f);
EXPECT_FLOAT_EQ(output.get<float>({1}), 99.0f);
}

TEST(ConcatLayerTests, ConcatAlongAxisWithSize1) {
ConcatLayer layer(0);

Tensor input1 = make_tensor<float>({1, 2, 3, 4, 5, 6}, {1, 3, 2});
Tensor input2 = make_tensor<float>({7, 8, 9, 10, 11, 12}, {1, 3, 2});

Tensor output;

layer.run({input1, input2}, output);

ASSERT_EQ(output.get_shape(), Shape({2, 3, 2}));

EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0}), 1.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1}), 2.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0}), 3.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1}), 4.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 2, 0}), 5.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 2, 1}), 6.0f);

EXPECT_FLOAT_EQ(output.get<float>({1, 0, 0}), 7.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 0, 1}), 8.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1, 0}), 9.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1, 1}), 10.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 2, 0}), 11.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 2, 1}), 12.0f);
}

TEST(ConcatLayerTests, ConcatScalars) {
ConcatLayer layer(0);

Tensor scalar1 = make_tensor<float>({42.0f}, {});
Tensor scalar2 = make_tensor<float>({99.0f}, {});

Tensor output;

EXPECT_THROW(layer.run({scalar1, scalar2}, output), std::runtime_error);
}

TEST(ConcatLayerTests, ConcatSameShapeFloatAxis0) {
ConcatLayer layer;
Tensor input1 = make_tensor<float>({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
Tensor input2 = make_tensor<float>({5.0f, 6.0f, 7.0f, 8.0f}, {2, 2});
Tensor output;

layer.run({input1, input2}, output);

ASSERT_EQ(output.get_shape(), Shape({4, 2}));

EXPECT_FLOAT_EQ(output.get<float>({0, 0}), 1.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1}), 2.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 0}), 3.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1}), 4.0f);

EXPECT_FLOAT_EQ(output.get<float>({2, 0}), 5.0f);
EXPECT_FLOAT_EQ(output.get<float>({2, 1}), 6.0f);
EXPECT_FLOAT_EQ(output.get<float>({3, 0}), 7.0f);
EXPECT_FLOAT_EQ(output.get<float>({3, 1}), 8.0f);
}

TEST(ConcatLayerTests, ConcatSameShapeIntAxis1) {
ConcatLayer layer(1);
Tensor input1 = make_tensor<int>({1, 2, 3, 4}, {2, 2});
Tensor input2 = make_tensor<int>({1, 2, 3, 4}, {2, 2});
Tensor output;

layer.run({input1, input2}, output);

ASSERT_EQ(output.get_shape(), Shape({2, 4}));

EXPECT_EQ(output.get<int>({0, 0}), 1);
EXPECT_EQ(output.get<int>({0, 1}), 2);
EXPECT_EQ(output.get<int>({0, 2}), 1);
EXPECT_EQ(output.get<int>({0, 3}), 2);

EXPECT_EQ(output.get<int>({1, 0}), 3);
EXPECT_EQ(output.get<int>({1, 1}), 4);
EXPECT_EQ(output.get<int>({1, 2}), 3);
EXPECT_EQ(output.get<int>({1, 3}), 4);
}

TEST(ConcatLayerTests, Concat3DTensorsAxis2) {
ConcatLayer layer(2);
Tensor input1 = make_tensor<float>({1, 2, 3, 4, 5, 6, 7, 8}, {2, 2, 2});
Tensor input2 =
make_tensor<float>({9, 10, 11, 12, 13, 14, 15, 16}, {2, 2, 2});
Tensor output;

layer.run({input1, input2}, output);

ASSERT_EQ(output.get_shape(), Shape({2, 2, 4}));

EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0}), 1.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1}), 2.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0}), 3.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1}), 4.0f);

EXPECT_FLOAT_EQ(output.get<float>({0, 0, 2}), 9.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 0, 3}), 10.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 2}), 11.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 3}), 12.0f);

EXPECT_FLOAT_EQ(output.get<float>({1, 0, 0}), 5.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 0, 1}), 6.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1, 0}), 7.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1, 1}), 8.0f);

EXPECT_FLOAT_EQ(output.get<float>({1, 0, 2}), 13.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 0, 3}), 14.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1, 2}), 15.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1, 3}), 16.0f);
}

TEST(ConcatLayerTests, NegativeAxis) {
ConcatLayer layer(-1);
Tensor input1 = make_tensor<float>({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
Tensor input2 = make_tensor<float>({5.0f, 6.0f, 7.0f, 8.0f}, {2, 2});
Tensor output;

layer.run({input1, input2}, output);

ASSERT_EQ(output.get_shape(), Shape({2, 4}));

EXPECT_FLOAT_EQ(output.get<float>({0, 0}), 1.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1}), 2.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 2}), 5.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 3}), 6.0f);

EXPECT_FLOAT_EQ(output.get<float>({1, 0}), 3.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 1}), 4.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 2}), 7.0f);
EXPECT_FLOAT_EQ(output.get<float>({1, 3}), 8.0f);
}

TEST(ConcatLayerTests, ConcatResNetStyle) {
ConcatLayer layer(1);
Tensor input1 = make_tensor<float>({1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 2, 2});
Tensor input2 =
make_tensor<float>({9, 10, 11, 12, 13, 14, 15, 16}, {1, 2, 2, 2});
Tensor output;

layer.run({input1, input2}, output);

ASSERT_EQ(output.get_shape(), Shape({1, 4, 2, 2}));

EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0, 0}), 1.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 0, 0, 1}), 2.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1, 0}), 3.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 0, 1, 1}), 4.0f);

EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0, 0}), 5.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 0, 1}), 6.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1, 0}), 7.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 1, 1, 1}), 8.0f);

EXPECT_FLOAT_EQ(output.get<float>({0, 2, 0, 0}), 9.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 2, 0, 1}), 10.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 2, 1, 0}), 11.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 2, 1, 1}), 12.0f);

EXPECT_FLOAT_EQ(output.get<float>({0, 3, 0, 0}), 13.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 3, 0, 1}), 14.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 3, 1, 0}), 15.0f);
EXPECT_FLOAT_EQ(output.get<float>({0, 3, 1, 1}), 16.0f);
}
Loading