Visualize and discover more of what you love listening to.
- Implemented relational database support for PostgreSQL/SQLite3 using SQLAlchemy to safely store user authentication tokens, spotify access tokens, and expiry timestamps.
- Utilized a Python/FastAPI backend for external API calls (Spotify Web API, SoundNet API) and internal endpoints.
- Pipelined dense quantitatve audio data through dimensionality reduction and clustering algorithms (t-SNE and DBSCAN) using numpy and scikit-learn.
- Created an interactive dashboard using ReactJS to visualize a user's Spotify taste nebula.
- Languages: Python, Javascript, HTML, CSS
- Database: SQLite3(inital development), PostgreSQL(migrated to later)
- Frameworks/Libraries: FastAPI, ReactJS, SQLAlchemy, Pydantic, Scikit-learn
- APIs: Spotify Web API, SoundNet Audio Feature API
-
Initial visualization with Plotly
-
Link to demo: https://drive.google.com/file/d/11vaPjYpVOHIJO-LCL2yXALcr2TxTJ_oA/view
- Optimized clustering algorithim of choice
- Deprecated Spotify audio features endpoint workaround

