This project demonstrates how to build a Machine Learning Pipeline for the Titanic Dataset using Decision Tree Classifier. The pipeline includes:
- Data Preprocessing (handling missing values, encoding, and scaling)
- Feature Selection using SelectKBest
- Model Training with Decision Tree Classifier
- Pipeline Serialization using Pickle
- Handling Missing Values:
SimpleImputer()
- Encoding Categorical Features:
OneHotEncoder()
- Feature Scaling:
MinMaxScaler()
- Feature Selection:
SelectKBest(score_func=chi2, k=8)
- Algorithm:
DecisionTreeClassifier()
- Pipeline: Created with
ColumnTransformer
andPipeline
- Serialization: Saved using Pickle