Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 10 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,32 +118,29 @@ The following table shows the backward pass performance comparison between Flash

## Installation

### Prerequisites
### Requirements

- **Python**: 3.8 or later
- **PyTorch**: 2.0.0 or later
- **CUDA**: 11.8 or later
- **Linux**: Ubuntu 22.04 or later
- **NVIDIA GPU**: Compute Capability 8.0 or higher
- **C++ Compiler**: GCC 7+
- **CUDA**: 11.8 or later
- **Python**: 3.9 or later
- **PyTorch**: 2.5.1 or later

### CUDA Environment Setup
### Install

Ensure your CUDA environment is properly configured:
You can install Flash-DMA via pre-compiled wheels:

```bash
# Check CUDA installation
nvcc --version

# Set CUDA_HOME if needed
export CUDA_HOME=/usr/local/cuda
pip install flash-dmattn --no-build-isolation
```

### Install from Source
Alternatively, you can compile and install from source:

```bash
git clone https://github.com/SmallDoges/flash-dmattn.git
cd flash-dmattn
MAX_JOBS=4 pip install . --no-build-isolation
pip install . --no-build-isolation
```


Expand Down
23 changes: 10 additions & 13 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,32 +118,29 @@ Flash-DMA 是一个高性能的注意力实现,将 Flash Attention 的内存

## 安装

### 先决条件
### 依赖

- **Python**: 3.8 或更高版本
- **PyTorch**: 2.0.0 或更高版本
- **CUDA**: 11.8 或更高版本
- **Linux**: Ubuntu 22.04 或更高版本
- **NVIDIA GPU**: 计算能力 8.0 或更高
- **C++ 编译器**: GCC 7+
- **CUDA**: 11.8 或更高版本
- **Python**: 3.9 或更高版本
- **PyTorch**: 2.5.1 或更高版本

### CUDA 环境设置
### 安装

确保您的 CUDA 环境已正确配置
您可以通过预编译的轮子安装 Flash-DMA

```bash
# 检查 CUDA 安装
nvcc --version

# 如需要,设置 CUDA_HOME
export CUDA_HOME=/usr/local/cuda
pip install flash-dmattn --no-build-isolation
```

### 从源码安装
或者,您可以从源代码编译和安装:

```bash
git clone https://github.com/SmallDoges/flash-dmattn.git
cd flash-dmattn
MAX_JOBS=4 pip install . --no-build-isolation
pip install . --no-build-isolation
```


Expand Down