Skip to content

Conversation

@aleozlx
Copy link
Collaborator

@aleozlx aleozlx commented Jan 27, 2026

πŸ“Œ Description

πŸ” Related Issues

πŸš€ Pull Request Checklist

Thank you for contributing to FlashInfer! Before we review your pull request, please make sure the following items are complete.

βœ… Pre-commit Checks

  • I have installed pre-commit by running pip install pre-commit (or used your preferred method).
  • I have installed the hooks with pre-commit install.
  • I have run the hooks manually with pre-commit run --all-files and fixed any reported issues.

If you are unsure about how to set up pre-commit, see the pre-commit documentation.

πŸ§ͺ Tests

  • Tests have been added or updated as needed.
  • All tests are passing (unittest, etc.).

Reviewer Notes

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Jan 27, 2026

Important

Review skipped

Draft detected.

Please check the settings in the CodeRabbit UI or the .coderabbit.yaml file in this repository. To trigger a single review, invoke the @coderabbitai review command.

You can disable this status message by setting the reviews.review_status to false in the CodeRabbit configuration file.

  • πŸ” Trigger a full review

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❀️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

@gemini-code-assist
Copy link
Contributor

Summary of Changes

Hello @aleozlx, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request significantly enhances the flexibility of the fused Mixture of Experts (MoE) kernel by enabling it to process pre-computed routing decisions. This allows for scenarios where expert selection and weighting are determined externally, rather than solely relying on the kernel's internal routing logits computation. The change facilitates integration with advanced routing strategies and optimizes the MoE execution pipeline by providing direct control over expert assignments.

Highlights

  • Pre-computed Routing Support: Introduced a new mode for the fused Mixture of Experts (MoE) kernel to accept pre-computed routing information (expert IDs and weights) directly, bypassing the need to compute routing from raw logits.
  • Python API Update: The trtllm_fp4_block_scale_routed_moe Python function now explicitly accepts topk_weights as a separate input, alongside topk_ids, clarifying the input structure for pre-computed routing.
  • C++ Kernel Interface Enhancement: The underlying C++ Runner::run function has been updated to include an expertIds parameter, enabling the kernel to utilize pre-determined expert assignments.
  • Conditional Routing Logic: Modified the C++ routing execution logic to dynamically choose between computing routing from provided logits or using the newly introduced expertIds for pre-computed routing.

🧠 New Feature in Public Preview: You can now enable Memory to help Gemini Code Assist learn from your team's feedback. This makes future code reviews more consistent and personalized to your project's style. Click here to enable Memory in your admin console.

Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point by creating a comment using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands on the current page.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in pull request comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with πŸ‘ and πŸ‘Ž on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution. ↩

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

The pull request introduces support for pre-computed routing weights and expert IDs in the FP4 block scale MoE kernels. The changes are consistently applied across the C++ and Python code, updating function signatures, call sites, and internal logic to accommodate the new parameters. The accompanying documentation updates in the Python file are clear and helpful. The implementation appears to be functionally sound and well-integrated.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant