Skip to content

franciscorpuz-NOAA/interpolation_uncertainty

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NBS interpolation_uncertainty

What interpolation_uncertainty does

Compute Uncertainty in subsampled Bathymetric Data using various methods

How to install interpolation_uncertainty

To install this package run:

python -m pip install git+https://github.com/noaa-ocs-hydrography/interpolation_uncertainty.git

Create a conda environment using included yml file:

conda env create -f environment.yml

Get started using interpolation_uncertainty

Check 'exploratory_analysis' Jupyter Notebook for basic usage

from interpolation_uncertainty.core.loadfile import load_file
from interpolation_uncertainty.processors.rasterProcessor import RasterProcessor
from interpolation_uncertainty.utils import utils
import numpy as np

# Read bathymetry data from file
filename = "../data/raster/BlueTopo.tiff"
bathy_data = load_file(filename)

# Optional: Visualize the dataset
bathy_data.show_depth()

# Create processor with specified subsampling parameters
linespacing = 256
max_multiple = 1
current_multiple = 1
processor = RasterProcessor(linespacing_meters=linespacing,
                            max_multiple=max_multiple,
                            multiple=current_multiple)

# Use processor object to compute various surface calculations
# E.g., Compute the residual surface
residual = processor.compute_residual_surface(bathy_data)

# Compute Uncertainty using PSD spectrum, etc
uncertainty_psd_v1 = processor.estimate_uncertainty(method='psd_v1', residual_data=residual)


How to cite interpolation_uncertainty

NOAA - NOS National Bathymetric Source Project Link: https://nauticalcharts.noaa.gov/learn/nbs.html

About

Methods to support the interpolation uncertainty estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 96.4%
  • Python 3.6%