@@ -4688,6 +4688,9 @@ def __init__(self, dir_model: Path, *args, **kwargs):
46884688 with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
46894689 hparams = json .load (f )
46904690 super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4691+ self .d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4692+ self .d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * self .d_model
4693+ self .n_group = self .hparams .get ("n_groups" , 1 )
46914694
46924695 def set_vocab (self ):
46934696 vocab_size = self .hparams ["vocab_size" ]
@@ -4758,10 +4761,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
47584761 # (D is also unsqueezed, but for more straightforward broadcast internally)
47594762 data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
47604763 elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4761- d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4762- d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4763- n_group = self .hparams .get ("n_groups" , 1 )
4764- data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4764+ data_torch = data_torch .reshape ((self .n_group , self .d_inner // self .n_group ))
47654765
47664766 if name .endswith (".A_log" ):
47674767 logger .debug ("A_log --> A ==> " + new_name )
@@ -4770,6 +4770,107 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
47704770 yield (new_name , data_torch )
47714771
47724772
4773+ @ModelBase .register ("BambaForCausalLM" )
4774+ class BambaModel (Mamba2Model ):
4775+ """Bamba is a hybrid SSM + Attention model that uses Mamba2 SSM layers"""
4776+ model_arch = gguf .MODEL_ARCH .BAMBA
4777+ undo_permute = True
4778+
4779+ def __init__ (self , * args , ** kwargs ):
4780+
4781+ # Hybrid mamba models use a prefix for the mamba-specific params.
4782+ # TODO: Extend this if the prefix(es) need to be configurable
4783+ self .hparam_prefixes = ["mamba" ]
4784+
4785+ super ().__init__ (* args , ** kwargs )
4786+
4787+ # Use Llama conversion for attention
4788+ self ._transformer_model_class : type [TextModel ] = LlamaModel
4789+
4790+ # Lists of which layers use ssm vs attention
4791+ self ._attn_layers = self .hparams .get ("attn_layer_indices" , [])
4792+ if not self ._attn_layers :
4793+ attn_period = self .hparams .get ("attn_layer_period" )
4794+ assert attn_period , "Didn't find attn_layer_indices or attn_layer_period"
4795+ attn_offset = self .hparams .get ("attn_layer_offset" )
4796+ assert attn_offset is not None , "No attention layer offset set with attn_layer_period"
4797+ self ._attn_layers = [
4798+ i for i in range (self .block_count )
4799+ if i % attn_period == attn_offset
4800+ ]
4801+ self ._ssm_layers = [
4802+ i for i in range (self .block_count )
4803+ if i not in self ._attn_layers
4804+ ]
4805+
4806+ # n_group and d_inner are used during reshape_tensors for mamaba2
4807+ self .d_model = self .find_hparam (["hidden_size" , "d_model" ])
4808+ self .n_group = self .find_hparam (["n_groups" ])
4809+ self .d_inner = self .find_hparam (["expand" ]) * self .d_model
4810+
4811+ def find_hparam (self , keys : Iterable [str ], * args , ** kwargs ) -> Any :
4812+ prefixed = []
4813+ for pfx in self .hparam_prefixes :
4814+ prefixed .extend (
4815+ "_" .join ([pfx , k ])
4816+ for k in keys
4817+ )
4818+ keys = list (keys ) + prefixed
4819+ return super ().find_hparam (keys , * args , ** kwargs )
4820+
4821+ def set_gguf_parameters (self ):
4822+
4823+ ## General Params ##
4824+ self .gguf_writer .add_embedding_length (self .d_model )
4825+ self .gguf_writer .add_block_count (self .block_count )
4826+ self .gguf_writer .add_context_length (self .hparams .get ("max_position_embeddings" , 0 ))
4827+ self .gguf_writer .add_vocab_size (self .hparams ["vocab_size" ])
4828+ self .gguf_writer .add_feed_forward_length (self .hparams ["intermediate_size" ])
4829+
4830+ ## Mamba mixer params ##
4831+ self .gguf_writer .add_ssm_conv_kernel (self .find_hparam (["conv_kernel" , "d_conv" ]))
4832+ self .gguf_writer .add_ssm_state_size (self .find_hparam (["state_size" , "d_state" ]))
4833+ self .gguf_writer .add_ssm_group_count (self .n_group )
4834+ self .gguf_writer .add_ssm_inner_size (self .d_inner )
4835+ # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
4836+ # in llama.cpp
4837+ self .gguf_writer .add_ssm_time_step_rank (self .find_hparam (["n_heads" ]))
4838+
4839+ ## Attention params ##
4840+ self .gguf_writer .add_attn_layer_indices (self ._attn_layers )
4841+ self .gguf_writer .add_rope_dimension_count (self .hparams ["attn_rotary_emb" ])
4842+ self .gguf_writer .add_head_count (self .hparams ["num_attention_heads" ])
4843+ self .gguf_writer .add_head_count_kv (self .find_hparam (["num_key_value_heads" , "n_head_kv" ]))
4844+
4845+ ## Feed Forward Params ##
4846+ self .gguf_writer .add_layer_norm_rms_eps (
4847+ self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4848+ )
4849+
4850+ ## Validation ##
4851+ d_head = self .find_hparam (["d_head" ], optional = True ) or 64
4852+ assert self .hparams .get ("hidden_act" ) in [None , "silu" ], "Only SILU activation supported"
4853+ assert self .d_inner % d_head == 0 , f"SSM inner size { self .d_inner } not a multiple of head dim { d_head } "
4854+
4855+ def modify_tensors (
4856+ self , data_torch : Tensor , name : str , bid : int | None
4857+ ) -> Iterable [tuple [str , Tensor ]]:
4858+
4859+ # Determine whether this is a mamaba layer or an attention layer
4860+ if bid in self ._ssm_layers :
4861+ for mamba_new_name , data_torch in super ().modify_tensors (
4862+ data_torch , name , bid
4863+ ):
4864+ yield mamba_new_name , data_torch
4865+ elif bid in self ._attn_layers :
4866+ for llama_new_name , data_torch in self ._transformer_model_class .modify_tensors (
4867+ self , data_torch , name , bid
4868+ ):
4869+ yield llama_new_name , data_torch
4870+ else :
4871+ yield self .map_tensor_name (name ), data_torch
4872+
4873+
47734874@ModelBase .register ("CohereForCausalLM" )
47744875class CommandR2Model (TextModel ):
47754876 model_arch = gguf .MODEL_ARCH .COMMAND_R
0 commit comments