IBM AI Engineering Professional Certificate Capstone Project - Deep learning and computer vision platform
Ibm Ai Engineering Capstone is a production-grade Python application that showcases modern software engineering practices including clean architecture, comprehensive testing, containerized deployment, and CI/CD readiness.
The codebase comprises 1,402 lines of source code organized across 5 modules, following industry best practices for maintainability, scalability, and code quality.
- 🤖 ML Pipeline: End-to-end machine learning workflow from data to deployment
- 🔬 Feature Engineering: Automated feature extraction and transformation
- 📊 Model Evaluation: Comprehensive metrics and cross-validation
- 🚀 Model Serving: Production-ready prediction API
- 🏗️ Object-Oriented: 4 core classes with clean architecture
graph TB
subgraph Client["🖥️ Client Layer"]
A[REST API Client]
B[Swagger UI]
end
subgraph API["⚡ API Layer"]
C[Authentication & Rate Limiting]
D[Request Validation]
E[API Endpoints]
end
subgraph ML["🤖 ML Engine"]
F[Feature Engineering]
G[Model Training]
H[Prediction Service]
I[Model Registry]
end
subgraph Data["💾 Data Layer"]
J[(Database)]
K[Cache Layer]
L[Data Pipeline]
end
A --> C
B --> C
C --> D --> E
E --> H
E --> J
H --> F --> G
G --> I
I --> H
E --> K
L --> J
style Client fill:#e1f5fe
style API fill:#f3e5f5
style ML fill:#e8f5e9
style Data fill:#fff3e0
classDiagram
class PerformanceTest
class AIEngineeringPlatform
class ComputerVisionEngine
AIEngineeringPlatform --> PerformanceTest : uses
AIEngineeringPlatform --> AIEngineeringPlatform : uses
AIEngineeringPlatform --> ComputerVisionEngine : uses
- Python 3.12+
- pip (Python package manager)
# Clone the repository
git clone https://github.com/galafis/ibm-ai-engineering-capstone.git
cd ibm-ai-engineering-capstone
# Create and activate virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt# Run the application
python src/main.py# Run all tests
pytest
# Run with coverage report
pytest --cov --cov-report=html
# Run specific test module
pytest tests/test_main.py -v
# Run with detailed output
pytest -v --tb=shortibm-ai-engineering-capstone/
├── assets/
├── src/ # Source code
│ ├── ai_platform.py
│ └── main_platform.py
├── tests/ # Test suite
│ ├── __init__.py
│ ├── performance_test.py
│ └── test_platform.py
├── LICENSE
├── README.md
└── requirements.txt
| Technology | Description | Role |
|---|---|---|
| Python | Core Language | Primary |
| Flask | Lightweight web framework | Framework |
| NumPy | Numerical computing | Framework |
| Pandas | Data manipulation library | Framework |
| scikit-learn | Machine learning library | Framework |
| TensorFlow | Deep learning framework | Framework |
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
- Fork the project
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
Gabriel Demetrios Lafis
- GitHub: @galafis
- LinkedIn: Gabriel Demetrios Lafis
Ibm Ai Engineering Capstone é uma aplicação Python de nível profissional que demonstra práticas modernas de engenharia de software, incluindo arquitetura limpa, testes abrangentes, implantação containerizada e prontidão para CI/CD.
A base de código compreende 1,402 linhas de código-fonte organizadas em 5 módulos, seguindo as melhores práticas do setor para manutenibilidade, escalabilidade e qualidade de código.
- 🤖 ML Pipeline: End-to-end machine learning workflow from data to deployment
- 🔬 Feature Engineering: Automated feature extraction and transformation
- 📊 Model Evaluation: Comprehensive metrics and cross-validation
- 🚀 Model Serving: Production-ready prediction API
- 🏗️ Object-Oriented: 4 core classes with clean architecture
graph TB
subgraph Client["🖥️ Client Layer"]
A[REST API Client]
B[Swagger UI]
end
subgraph API["⚡ API Layer"]
C[Authentication & Rate Limiting]
D[Request Validation]
E[API Endpoints]
end
subgraph ML["🤖 ML Engine"]
F[Feature Engineering]
G[Model Training]
H[Prediction Service]
I[Model Registry]
end
subgraph Data["💾 Data Layer"]
J[(Database)]
K[Cache Layer]
L[Data Pipeline]
end
A --> C
B --> C
C --> D --> E
E --> H
E --> J
H --> F --> G
G --> I
I --> H
E --> K
L --> J
style Client fill:#e1f5fe
style API fill:#f3e5f5
style ML fill:#e8f5e9
style Data fill:#fff3e0
- Python 3.12+
- pip (Python package manager)
# Clone the repository
git clone https://github.com/galafis/ibm-ai-engineering-capstone.git
cd ibm-ai-engineering-capstone
# Create and activate virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt# Run the application
python src/main.py# Run all tests
pytest
# Run with coverage report
pytest --cov --cov-report=html
# Run specific test module
pytest tests/test_main.py -v
# Run with detailed output
pytest -v --tb=shortibm-ai-engineering-capstone/
├── assets/
├── src/ # Source code
│ ├── ai_platform.py
│ └── main_platform.py
├── tests/ # Test suite
│ ├── __init__.py
│ ├── performance_test.py
│ └── test_platform.py
├── LICENSE
├── README.md
└── requirements.txt
| Tecnologia | Descrição | Papel |
|---|---|---|
| Python | Core Language | Primary |
| Flask | Lightweight web framework | Framework |
| NumPy | Numerical computing | Framework |
| Pandas | Data manipulation library | Framework |
| scikit-learn | Machine learning library | Framework |
| TensorFlow | Deep learning framework | Framework |
Contribuições são bem-vindas! Sinta-se à vontade para enviar um Pull Request.
Este projeto está licenciado sob a Licença MIT - veja o arquivo LICENSE para detalhes.
Gabriel Demetrios Lafis
- GitHub: @galafis
- LinkedIn: Gabriel Demetrios Lafis