Skip to content

IBM Deep Learning with PyTorch, Keras and TensorFlow Professional Certificate Capstone Project

License

Notifications You must be signed in to change notification settings

galafis/ibm-deep-learning-capstone

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧠 Ibm Deep Learning Capstone

IBM Deep Learning with PyTorch, Keras and TensorFlow Professional Certificate Capstone Project

Python NumPy Pandas Plotly scikit--learn Streamlit License

English | Português


English

🎯 Overview

Ibm Deep Learning Capstone is a production-grade Python application that showcases modern software engineering practices including clean architecture, comprehensive testing, containerized deployment, and CI/CD readiness.

The codebase comprises 143 lines of source code organized across 5 modules, following industry best practices for maintainability, scalability, and code quality.

✨ Key Features

  • 🏗️ Object-Oriented: 2 core classes with clean architecture
  • 📐 Clean Architecture: Modular design with clear separation of concerns
  • 🧪 Test Coverage: Unit and integration tests for reliability
  • 📚 Documentation: Comprehensive inline documentation and examples
  • 🔧 Configuration: Environment-based configuration management

🏗️ Architecture

graph LR
    subgraph Input["📥 Input"]
        A[Raw Data]
        B[Feature Config]
    end
    
    subgraph Pipeline["🔬 ML Pipeline"]
        C[Preprocessing]
        D[Feature Engineering]
        E[Model Training]
        F[Evaluation]
    end
    
    subgraph Output["📤 Output"]
        G[Trained Models]
        H[Metrics & Reports]
        I[Predictions]
    end
    
    A --> C --> D --> E --> F
    B --> D
    F --> G
    F --> H
    G --> I
    
    style Input fill:#e1f5fe
    style Pipeline fill:#f3e5f5
    style Output fill:#e8f5e9
Loading

🚀 Quick Start

Prerequisites

  • Python 3.12+
  • pip (Python package manager)

Installation

# Clone the repository
git clone https://github.com/galafis/ibm-deep-learning-capstone.git
cd ibm-deep-learning-capstone

# Create and activate virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

Running

# Run the application
python src/main.py

🧪 Testing

# Run all tests
pytest

# Run with coverage report
pytest --cov --cov-report=html

# Run specific test module
pytest tests/test_main.py -v

# Run with detailed output
pytest -v --tb=short

📁 Project Structure

ibm-deep-learning-capstone/
├── docs/          # Documentation
│   ├── api_documentation.md
│   └── user_guide.md
├── src/          # Source code
│   ├── deep_learning_platform.py
│   └── main_platform.py
├── tests/         # Test suite
│   ├── __init__.py
│   ├── performance_test.py
│   └── test_platform.py
├── LICENSE
├── README.md
└── requirements.txt

🛠️ Tech Stack

Technology Description Role
Python Core Language Primary
NumPy Numerical computing Framework
Pandas Data manipulation library Framework
Plotly Interactive visualization Framework
scikit-learn Machine learning library Framework
Streamlit Data app framework Framework

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

  1. Fork the project
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

👤 Author

Gabriel Demetrios Lafis


Português

🎯 Visão Geral

Ibm Deep Learning Capstone é uma aplicação Python de nível profissional que demonstra práticas modernas de engenharia de software, incluindo arquitetura limpa, testes abrangentes, implantação containerizada e prontidão para CI/CD.

A base de código compreende 143 linhas de código-fonte organizadas em 5 módulos, seguindo as melhores práticas do setor para manutenibilidade, escalabilidade e qualidade de código.

✨ Funcionalidades Principais

  • 🏗️ Object-Oriented: 2 core classes with clean architecture
  • 📐 Clean Architecture: Modular design with clear separation of concerns
  • 🧪 Test Coverage: Unit and integration tests for reliability
  • 📚 Documentation: Comprehensive inline documentation and examples
  • 🔧 Configuration: Environment-based configuration management

🏗️ Arquitetura

graph LR
    subgraph Input["📥 Input"]
        A[Raw Data]
        B[Feature Config]
    end
    
    subgraph Pipeline["🔬 ML Pipeline"]
        C[Preprocessing]
        D[Feature Engineering]
        E[Model Training]
        F[Evaluation]
    end
    
    subgraph Output["📤 Output"]
        G[Trained Models]
        H[Metrics & Reports]
        I[Predictions]
    end
    
    A --> C --> D --> E --> F
    B --> D
    F --> G
    F --> H
    G --> I
    
    style Input fill:#e1f5fe
    style Pipeline fill:#f3e5f5
    style Output fill:#e8f5e9
Loading

🚀 Início Rápido

Prerequisites

  • Python 3.12+
  • pip (Python package manager)

Installation

# Clone the repository
git clone https://github.com/galafis/ibm-deep-learning-capstone.git
cd ibm-deep-learning-capstone

# Create and activate virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

Running

# Run the application
python src/main.py

🧪 Testing

# Run all tests
pytest

# Run with coverage report
pytest --cov --cov-report=html

# Run specific test module
pytest tests/test_main.py -v

# Run with detailed output
pytest -v --tb=short

📁 Estrutura do Projeto

ibm-deep-learning-capstone/
├── docs/          # Documentation
│   ├── api_documentation.md
│   └── user_guide.md
├── src/          # Source code
│   ├── deep_learning_platform.py
│   └── main_platform.py
├── tests/         # Test suite
│   ├── __init__.py
│   ├── performance_test.py
│   └── test_platform.py
├── LICENSE
├── README.md
└── requirements.txt

🛠️ Stack Tecnológica

Tecnologia Descrição Papel
Python Core Language Primary
NumPy Numerical computing Framework
Pandas Data manipulation library Framework
Plotly Interactive visualization Framework
scikit-learn Machine learning library Framework
Streamlit Data app framework Framework

🤝 Contribuindo

Contribuições são bem-vindas! Sinta-se à vontade para enviar um Pull Request.

📄 Licença

Este projeto está licenciado sob a Licença MIT - veja o arquivo LICENSE para detalhes.

👤 Autor

Gabriel Demetrios Lafis

About

IBM Deep Learning with PyTorch, Keras and TensorFlow Professional Certificate Capstone Project

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages