+<ManSection> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="K,S"/> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="K,S"/> <Func Name="ContractedComplex" Arg="K"/> <Func Name="ContractedComplex" Arg="G"/> <Description> <P/> Inputs a complex (regular CW, Filtered regular CW, pure cubical etc.) and returns a homotopy equivalent subcomplex. <P/> Inputs a pure cubical complex or pure permutahedral complex <M>K</M> and a subcomplex <M>S</M>. It returns a homotopy equivalent subcomplex of <M>K</M> that contains <M>S</M>. <P/> Inputs a graph <M>G</M> and returns a subgraph <M>S</M> such that the clique complexes of <M>G</M> and <M>S</M> are homotopy equivalent. <P/><B>Examples:</B> <URL><Link>../tutorial/chap1.html</Link><LinkText>1</LinkText></URL> , <URL><Link>../tutorial/chap2.html</Link><LinkText>2</LinkText></URL> , <URL><Link>../tutorial/chap3.html</Link><LinkText>3</LinkText></URL> , <URL><Link>../tutorial/chap5.html</Link><LinkText>4</LinkText></URL> , <URL><Link>../tutorial/chap7.html</Link><LinkText>5</LinkText></URL> , <URL><Link>../tutorial/chap10.html</Link><LinkText>6</LinkText></URL> , <URL><Link>../tutorial/chap11.html</Link><LinkText>7</LinkText></URL> , <URL><Link>../tutorial/chap13.html</Link><LinkText>8</LinkText></URL> , <URL><Link>../www/SideLinks/About/aboutCoveringSpaces.html</Link><LinkText>9</LinkText></URL> , <URL><Link>../www/SideLinks/About/aboutCoverinSpaces.html</Link><LinkText>10</LinkText></URL> , <URL><Link>../www/SideLinks/About/aboutCubical.html</Link><LinkText>11</LinkText></URL> , <URL><Link>../www/SideLinks/About/aboutKnots.html</Link><LinkText>12</LinkText></URL>
0 commit comments