Skip to content

georgegian2018/azure-data-analyst-portfolio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10,725 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Azure Data Analyst Portfolio

Azure Business Analytics Power BI SQL Python

EDA Python Data Cleaning Status

GitHub AZ-900 DP-900 PL-300 License


Repository: azure-data-analyst-portfolio
A practical, job-focused portfolio showcasing data analysis skills using Microsoft Azure, Power BI, SQL, and Python.


🎯 Goal

This portfolio demonstrates my ability to:

  • Collect, clean, and model data
  • Write clear, efficient SQL for analysis
  • Build Power BI dashboards with meaningful KPIs
  • Communicate insights in a business-friendly way
  • Apply Azure fundamentals to modern analytics workflows

🧰 Core Skills

  • Power BI: Data modeling, DAX, measures, interactive dashboards
  • SQL: Joins, aggregations, window functions, KPI queries
  • Python: Pandas-based analysis, cleaning, EDA, visualisation
  • Azure: Data fundamentals and cloud-ready analytics concepts
  • Reporting: KPI definition, stakeholder-ready summaries

πŸ“œ Certifications (Azure Track)

  • DP-900 β€” Microsoft Azure Data Fundamentals (targeted)
  • PL-300 β€” Microsoft Power BI Data Analyst Associate (targeted)
  • DP-203 β€” Microsoft Azure Data Engineer Associate (future)
  • DP-100 β€” Microsoft Azure Data Scientist Associate (future)

Note: This repository is structured to grow from Data Analyst β†’ Analytics Engineer β†’ Data/ML roles over time.


πŸ“‚ Repository Structure (Overview)

azure-data-analyst-portfolio/
β”‚
β”œβ”€β”€ 00_README_ASSETS/ # Images used in README (dashboards, diagrams)
β”œβ”€β”€ 01_PowerBI_Dashboards/ # Power BI projects (PBIX + screenshots)
β”œβ”€β”€ 02_SQL_Analysis/ # SQL queries & analysis tasks
β”œβ”€β”€ 03_Python_Analysis/ # Jupyter notebooks for EDA & cleaning
β”œβ”€β”€ 04_Azure_Data_Samples/ # Azure-flavoured demos (optional)
β”œβ”€β”€ 05_Reports/ # PDF/MD executive-style summaries
└── datasets/ # Public or synthetic datasets (where allowed)

πŸ“‚ Repository Structure (Detailed)

azure-data-analyst-portfolio/
β”‚
β”œβ”€β”€ README.md
β”‚
β”œβ”€β”€ datasets/
β”‚   β”œβ”€β”€ README.md
β”‚   └── sample_datasets/
β”‚
β”œβ”€β”€ 01_powerbi_dashboards/
β”‚   β”œβ”€β”€ README.md
β”‚   β”œβ”€β”€ sales_performance_dashboard/
β”‚   β”‚   β”œβ”€β”€ sales_dashboard.pbix
β”‚   β”‚   └── screenshots/
β”‚   β”‚       β”œβ”€β”€ overview.png
β”‚   β”‚       └── kpis.png
β”‚   └── customer_insights_dashboard/
β”‚
β”œβ”€β”€ 02_sql_analysis/
β”‚   β”œβ”€β”€ README.md
β”‚   β”œβ”€β”€ sales_analysis.sql
β”‚   β”œβ”€β”€ customer_retention.sql
β”‚   └── README_queries.md
β”‚
β”œβ”€β”€ 03_python_analysis/
β”‚   β”œβ”€β”€ README.md
β”‚   β”œβ”€β”€ eda_sales.ipynb
β”‚   β”œβ”€β”€ data_cleaning.ipynb
β”‚   └── utils/
β”‚
β”œβ”€β”€ 04_azure_data_projects/
β”‚   β”œβ”€β”€ README.md
β”‚   β”œβ”€β”€ azure_sql_to_powerbi/
β”‚   β”‚   β”œβ”€β”€ architecture.png
β”‚   β”‚   └── setup_notes.md
β”‚
β”œβ”€β”€ 05_reports/
β”‚   β”œβ”€β”€ README.md
β”‚   β”œβ”€β”€ executive_summary.md
β”‚   └── sales_insights_report.pdf
β”‚
└── .gitignore


βœ… Featured Projects

1) Power BI β€” KPI Dashboard (PL-300 aligned)

Location: 01_PowerBI_Dashboards/
What it shows:

  • Data modeling (star schema where applicable)
  • Key measures (DAX): revenue, trends, YoY/MoM, segmentation
  • Clean visual storytelling + drill-down navigation

Deliverables:

  • .pbix file
  • Dashboard screenshots
  • 1-page insight summary (Markdown/PDF)

2) SQL β€” Business Questions & KPI Queries

Location: 02_SQL_Analysis/
What it shows:

  • Querying for insights: sales, retention, churn, cohorts
  • Intermediate SQL: joins, CTEs, window functions
  • Clean query formatting and documentation

Deliverables:

  • .sql scripts
  • Query outputs (sample tables)
  • Short insight notes

3) Python β€” Data Cleaning + Exploratory Data Analysis (EDA)

Location: 03_Python_Analysis/
What it shows:

  • Reproducible analysis in notebooks
  • Cleaning pipelines (missing values, duplicates, outliers)
  • EDA charts and insights using Pandas + Matplotlib

Deliverables:

  • .ipynb notebooks
  • Exported figures
  • Summary of findings

☁️ Azure Component (Optional but Recommended)

Location: 04_Azure_Data_Samples/
Examples of Azure-based workflows (as I build them):

  • Azure Storage (Blob) β†’ Power BI
  • Azure SQL Database β†’ Power BI
  • Basic pipeline concepts aligned with DP-900 / DP-203

This section focuses on simple, realistic, junior-friendly Azure scenarios.


🧭 How to Navigate This Repo

  • Start with Power BI dashboards: 01_PowerBI_Dashboards/
  • Review SQL scripts: 02_SQL_Analysis/
  • Explore Python notebooks: 03_Python_Analysis/
  • Read executive-style summaries: 05_Reports/

πŸ§ͺ Tools & Tech

  • Power BI Desktop
  • SQL (Azure SQL / PostgreSQL / SQL Server syntax depending on project)
  • Python (Pandas, NumPy, Matplotlib)
  • Git / GitHub
  • Azure concepts (AZ-900 / DP-900 aligned)

πŸ“ˆ What I’m Building Next

  • A complete Power BI project with dataset + DAX measures + report narrative
  • A SQL mini-pack with 10 business questions + clean solutions
  • A Python EDA pack with a reusable cleaning template
  • A simple Azure SQL β†’ Power BI pipeline demo

πŸ“Œ Notes on Datasets

  • Datasets are either public, open-license, or synthetic.
  • If a dataset has licensing restrictions, I will include:
    • Source link
    • Licensing note
    • Instructions to download independently

🀝 Contact / Collaboration

If you’re a recruiter or hiring manager and would like:

  • a quick walkthrough of a project,
  • a Power BI demo,
  • or a summary of how I built a dashboard end-to-end,

feel free to reach out via GitHub.


Last updated: January 2026


πŸ™Œ Acknowledgments

Built and maintained by Georgios Giannakopoulos.
Inspired by open knowledge engineering and long-term documentation practices.


πŸ“œ License

This project is licensed under the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0).