Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 48 additions & 10 deletions sentry_sdk/integrations/anthropic.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from functools import wraps
import json
from typing import TYPE_CHECKING

import sentry_sdk
Expand Down Expand Up @@ -117,8 +116,32 @@ def _set_input_data(span, kwargs, integration):
and should_send_default_pii()
and integration.include_prompts
):
normalized_messages = []
for message in messages:
if (
message.get("role") == "user"
and "content" in message
and isinstance(message["content"], (list, tuple))
):
for item in message["content"]:
import ipdb

ipdb.set_trace()
if item["type"] == "tool_result":
normalized_messages.append(
{
"role": "tool",
"content": {
"tool_use_id": item["tool_use_id"],
"output": item["content"],
},
}
)
else:
normalized_messages.append(message)

set_data_normalized(
span, SPANDATA.GEN_AI_REQUEST_MESSAGES, safe_serialize(messages)
span, SPANDATA.GEN_AI_REQUEST_MESSAGES, normalized_messages, unpack=False
)

set_data_normalized(
Expand Down Expand Up @@ -159,21 +182,36 @@ def _set_output_data(
Set output data for the span based on the AI response."""
span.set_data(SPANDATA.GEN_AI_RESPONSE_MODEL, model)
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TEXT,
json.dumps(content_blocks),
unpack=False,
)
output_messages = {
"response": [],
"tool": [],
} # type: (dict[str, list[Any]])

for output in content_blocks:
if output["type"] == "text":
output_messages["response"].append(output["text"])
elif output["type"] == "tool_use":
output_messages["tool"].append(output)

if len(output_messages["tool"]) > 0:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS,
output_messages["tool"],
unpack=False,
)

if len(output_messages["response"]) > 0:
set_data_normalized(
span, SPANDATA.GEN_AI_RESPONSE_TEXT, output_messages["response"]
)

record_token_usage(
span,
input_tokens=input_tokens,
output_tokens=output_tokens,
)

# TODO: GEN_AI_RESPONSE_TOOL_CALLS ?

if finish_span:
span.__exit__(None, None, None)

Expand Down
Loading