Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 41 additions & 21 deletions sentry_sdk/integrations/langchain.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
normalize_message_roles,
set_data_normalized,
get_start_span_function,
truncate_and_annotate_messages,
)
from sentry_sdk.consts import OP, SPANDATA
from sentry_sdk.integrations import DidNotEnable, Integration
Expand Down Expand Up @@ -221,12 +222,17 @@ def on_llm_start(
}
for prompt in prompts
]
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
normalized_messages,
unpack=False,
scope = sentry_sdk.get_current_scope()
messages_data = truncate_and_annotate_messages(
normalized_messages, span, scope
)
if messages_data is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
messages_data,
unpack=False,
)

def on_chat_model_start(self, serialized, messages, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Dict[str, Any], List[List[BaseMessage]], UUID, Any) -> Any
Expand Down Expand Up @@ -278,13 +284,17 @@ def on_chat_model_start(self, serialized, messages, *, run_id, **kwargs):
self._normalize_langchain_message(message)
)
normalized_messages = normalize_message_roles(normalized_messages)

set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
normalized_messages,
unpack=False,
scope = sentry_sdk.get_current_scope()
messages_data = truncate_and_annotate_messages(
normalized_messages, span, scope
)
if messages_data is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
messages_data,
unpack=False,
)

def on_chat_model_end(self, response, *, run_id, **kwargs):
# type: (SentryLangchainCallback, LLMResult, UUID, Any) -> Any
Expand Down Expand Up @@ -758,12 +768,17 @@ def new_invoke(self, *args, **kwargs):
and integration.include_prompts
):
normalized_messages = normalize_message_roles([input])
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
normalized_messages,
unpack=False,
scope = sentry_sdk.get_current_scope()
messages_data = truncate_and_annotate_messages(
normalized_messages, span, scope
)
if messages_data is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
messages_data,
unpack=False,
)

output = result.get("output")
if (
Expand Down Expand Up @@ -813,12 +828,17 @@ def new_stream(self, *args, **kwargs):
and integration.include_prompts
):
normalized_messages = normalize_message_roles([input])
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
normalized_messages,
unpack=False,
scope = sentry_sdk.get_current_scope()
messages_data = truncate_and_annotate_messages(
normalized_messages, span, scope
)
if messages_data is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_REQUEST_MESSAGES,
messages_data,
unpack=False,
)

# Run the agent
result = f(self, *args, **kwargs)
Expand Down
77 changes: 75 additions & 2 deletions tests/integrations/langchain/test_langchain.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import json
from typing import List, Optional, Any, Iterator
from unittest import mock
from unittest.mock import Mock, patch
Expand Down Expand Up @@ -884,8 +885,6 @@ def test_langchain_message_role_mapping(sentry_init, capture_events):

# Parse the message data (might be JSON string)
if isinstance(messages_data, str):
import json

try:
messages = json.loads(messages_data)
except json.JSONDecodeError:
Expand Down Expand Up @@ -958,3 +957,77 @@ def test_langchain_message_role_normalization_units():
assert normalized[3]["role"] == "system" # system unchanged
assert "role" not in normalized[4] # Message without role unchanged
assert normalized[5] == "string message" # String message unchanged


def test_langchain_message_truncation(sentry_init, capture_events):
"""Test that large messages are truncated properly in Langchain integration."""
from langchain_core.outputs import LLMResult, Generation

sentry_init(
integrations=[LangchainIntegration(include_prompts=True)],
traces_sample_rate=1.0,
send_default_pii=True,
)
events = capture_events()

callback = SentryLangchainCallback(max_span_map_size=100, include_prompts=True)

run_id = "12345678-1234-1234-1234-123456789012"
serialized = {"_type": "openai-chat", "model_name": "gpt-3.5-turbo"}

large_content = (
"This is a very long message that will exceed our size limits. " * 1000
)
prompts = [
"small message 1",
large_content,
large_content,
"small message 4",
"small message 5",
]

with start_transaction():
callback.on_llm_start(
serialized=serialized,
prompts=prompts,
run_id=run_id,
invocation_params={
"temperature": 0.7,
"max_tokens": 100,
"model": "gpt-3.5-turbo",
},
)

response = LLMResult(
generations=[[Generation(text="The response")]],
llm_output={
"token_usage": {
"total_tokens": 25,
"prompt_tokens": 10,
"completion_tokens": 15,
}
},
)
callback.on_llm_end(response=response, run_id=run_id)

assert len(events) > 0
tx = events[0]
assert tx["type"] == "transaction"

llm_spans = [
span for span in tx.get("spans", []) if span.get("op") == "gen_ai.pipeline"
]
assert len(llm_spans) > 0

llm_span = llm_spans[0]
assert SPANDATA.GEN_AI_REQUEST_MESSAGES in llm_span["data"]

messages_data = llm_span["data"][SPANDATA.GEN_AI_REQUEST_MESSAGES]
assert isinstance(messages_data, str)

parsed_messages = json.loads(messages_data)
assert isinstance(parsed_messages, list)
assert len(parsed_messages) == 2
assert "small message 4" in str(parsed_messages[0])
assert "small message 5" in str(parsed_messages[1])
assert tx["_meta"]["spans"]["0"]["data"]["gen_ai.request.messages"][""]["len"] == 5