Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -2819,6 +2819,66 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
return [(self.map_tensor_name(name), data_torch)]


@Model.register("InternLM3ForCausalLM")
class InternLM3Model(Model):
model_arch = gguf.MODEL_ARCH.LLAMA

def set_vocab(self):
tokens, scores, toktypes = self._create_vocab_sentencepiece()

self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)

special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))

tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])

if "added_tokens_decoder" in tokenizer_config_json:
for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
if token_data.get("special"):
token_id = int(token_id)
token = token_data["content"]
special_vocab._set_special_token(token, token_id)
# update eos token
if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
special_vocab.special_token_ids["eos"] = token_id

special_vocab.add_to_gguf(self.gguf_writer)

def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])

if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)

if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]


@Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT
Expand Down
Loading